Abstract

A scalable platform for on-chip optical quantum networks will rely on standard top-down nanofabrication techniques and solid-state emitters with long coherence times. We present a new hybrid platform that integrates amorphous silicon photonic waveguides and microresonators fabricated on top of a yttrium orthosilicate substrate doped with erbium ions. The quality factor of one such resonator was measured to exceed 100,000 and the ensemble cooperativity was measured to be 0.54. The resonator-coupled ions exhibited spontaneous emission rate enhancement and increased coupling to the input field, as required for further development of on-chip quantum light-matter interfaces.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality factor nanophotonic resonators in bulk rare-earth doped crystals

Tian Zhong, Jake Rochman, Jonathan M. Kindem, Evan Miyazono, and Andrei Faraon
Opt. Express 24(1) 536-544 (2016)

Coupled fiber taper extraction of 1.53 μm photoluminescence from erbium doped silicon nitride photonic crystal cavities

Gary Shambat, Yiyang Gong, Jesse Lu, Selçuk Yerci, Rui Li, Luca Dal Negro, and Jelena Vučković
Opt. Express 18(6) 5964-5973 (2010)

Quantum nanophotonics in diamond [Invited]

Tim Schröder, Sara L. Mouradian, Jiabao Zheng, Matthew E. Trusheim, Michael Walsh, Edward H. Chen, Luozhou Li, Igal Bayn, and Dirk Englund
J. Opt. Soc. Am. B 33(4) B65-B83 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  2. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
    [Crossref]
  3. T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photon. 8(5), 356–363 (2014).
    [Crossref]
  4. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
    [Crossref]
  5. F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
    [Crossref]
  6. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
    [Crossref] [PubMed]
  7. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
    [Crossref] [PubMed]
  8. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
    [Crossref]
  9. T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
    [Crossref]
  10. S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
    [Crossref] [PubMed]
  11. D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
    [Crossref]
  12. D. L. McAuslan and J. J. Longdell, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Phys. Rev. A 80(6), 062307 (2009).
    [Crossref]
  13. D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
    [Crossref]
  14. T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
    [Crossref] [PubMed]
  15. T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
    [Crossref]
  16. M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
    [Crossref]
  17. E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
    [Crossref]
  18. B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
    [Crossref]
  19. T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
    [Crossref]
  20. M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” http://arxiv.org/abs/1611.04315 .
  21. E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
    [Crossref]
  22. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
    [Crossref]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  24. T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
    [Crossref]
  25. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
    [Crossref]
  26. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
    [Crossref]
  27. I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).
  28. P. E. Barclay, K. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588 (2009).
    [Crossref] [PubMed]
  29. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
    [Crossref]
  30. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
    [Crossref] [PubMed]
  31. B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
    [Crossref]
  32. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
    [Crossref] [PubMed]
  33. S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
    [Crossref]
  34. B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
    [Crossref] [PubMed]
  35. R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
    [Crossref]
  36. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
    [Crossref] [PubMed]

2017 (1)

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

2016 (5)

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

2015 (4)

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

2014 (2)

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photon. 8(5), 356–363 (2014).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

2013 (1)

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

2011 (5)

D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

2010 (5)

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

2009 (4)

D. L. McAuslan and J. J. Longdell, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Phys. Rev. A 80(6), 062307 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
[Crossref]

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

P. E. Barclay, K. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588 (2009).
[Crossref] [PubMed]

2008 (4)

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

2006 (3)

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

2005 (1)

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Afzelius, M.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

Ahlefeldt, R. L.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

Alexander, A. L.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

Auffèves, A.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Awschalom, D. D.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Barclay, P. E.

Bartholomew, J. G.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Bauters, J. F.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Beausoleil, R. G.

Beavan, S. E.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bertet, P.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Blatt, R.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photon. 8(5), 356–363 (2014).
[Crossref]

Bonarota, M.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

Böttger, T.

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

Bouwmeester, D.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Bowers, J. E.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Buckley, B. B.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Bussières, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Calusine, G.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Chanelière, T.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

Cirac, J. I.

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

Cone, R.

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

Corrielli, G.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

Craiciu, I.

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

Damon, V.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

de Dood, M. J. A.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

de Riedmatten, H.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Ding, D.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Diniz, I.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Evans, R. E.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

Faraon, A.

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

Ferreira, R.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Fu, K.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
[Crossref]

George, M.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Gérard, J. M.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Gisin, N.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

Hastings-Simon, S. R.

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

Heck, M. J. R.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Hedges, M. P.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Heremans, F. J.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Horansky, R. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kindem, J. M.

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

Koehl, W. F.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

Korystov, D.

D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
[Crossref]

Korzh, B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Kraus, B.

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

Kröll, S.

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

Lauritzen, B.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

Le Gouët, J. L.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

Lita, A. E.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Longdell, J.

D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
[Crossref]

Longdell, J. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

D. L. McAuslan and J. J. Longdell, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Phys. Rev. A 80(6), 062307 (2009).
[Crossref]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

Louchet-Chauvet, A.

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

Lukin, M. D.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
[Crossref]

Madden, S.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Manson, N. B.

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

Marsili, F.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Marzban, S.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Mazzera, M.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

McAuslan, D.

D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
[Crossref]

McAuslan, D. L.

D. L. McAuslan and J. J. Longdell, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Phys. Rev. A 80(6), 062307 (2009).
[Crossref]

Minar, J.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

Mirin, R. P.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Miyazono, E.

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Nilsson, M.

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

Northup, T. E.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photon. 8(5), 356–363 (2014).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
[Crossref]

Oblak, D.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Osellame, R.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Pereira, L. M. C.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Portolan, S.

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Ricken, R.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Rochman, J.

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
[Crossref]

Sangouard, N.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

Santori, C.

Scherer, a.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Sellars, M. J

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Sellars, M. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

Seri, A.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

Shaw, M. D

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

Shaw, M. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Simon, C.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

Sinclair, N.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sipahigil, A.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sohler, W.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Sridharan, D.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

Sukachev, D. D.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

Sun, Y.

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Thiel, C.

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
[Crossref]

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

van Mechelen, J. L. M.

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

Vantomme, A.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Verma, V. B

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

Verma, V. B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Vu, K.

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
[Crossref]

Waks, E.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

Welker, G.

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

Wittig, S. M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Zbinden, H.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

Zhong, M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

Zhong, T.

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

T. Zhong, J. Rochman, J. M. Kindem, E. Miyazono, and A. Faraon, “High quality factor nanophotonic resonators in bulk rare-earth doped crystals,” Opt. Express 24(1), 536 (2016).
[Crossref] [PubMed]

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

Zibrov, A. S.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

Appl. Phys. Lett. (3)

E. Miyazono, T. Zhong, I. Craiciu, J. M. Kindem, and A. Faraon, “Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories,” Appl. Phys. Lett. 108(1), 011111 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105(12), 2013–2016 (2014).
[Crossref]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, a. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Mod. Optics (1)

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Optics 60(18), 1519–1537 (2013).
[Crossref]

Nat. Photon. (5)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3(12), 687–695 (2010).
[Crossref]

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nat. Photon. 8(5), 356–363 (2014).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photon. 3(12), 706–714 (2009).
[Crossref]

D. Ding, L. M. C. Pereira, J. F. Bauters, M. J. R. Heck, G. Welker, A. Vantomme, J. E. Bowers, M. J. A. de Dood, and D. Bouwmeester, “Multidimensional Purcell effect in an ytterbium-doped ring resonator,” Nat. Photon. 10(6), 385–388 (2016).
[Crossref]

E. Saglamyurek, J. Jin, V. B Verma, M. D Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photon. 9(2), 83–87 (2015).
[Crossref]

Nature (5)

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[Crossref] [PubMed]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479(7371), 84–87 (2011).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517(7533), 177–180 (2015).
[Crossref] [PubMed]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469(7331), 512–515 (2011).
[Crossref] [PubMed]

Nature Commun. (2)

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nature Commun. 6, 8206 (2015).
[Crossref]

T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, “Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles,” Nature Commun. 8, 14107 (2017).
[Crossref]

New J. Phys. (1)

V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J. L. Le Gouët, “Revival of silenced echo and quantum memory for light,” New J. Phys. 13(9), 093031 (2011).
[Crossref]

Opt. Express (2)

Phys. Rev. A (7)

D. L. McAuslan and J. J. Longdell, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator,” Phys. Rev. A 80(6), 062307 (2009).
[Crossref]

D. McAuslan, D. Korystov, and J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83(6), 063847 (2011).
[Crossref]

B. Lauritzen, S. R. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78(4), 043402 (2008).
[Crossref]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, “Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 73(2), 20302 (2006).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82(2), 022310 (2010).
[Crossref]

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, “Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories,” Phys. Rev. A 10(6), 385–388 (2011).

Phys. Rev. Applied (2)

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Applied 5(4), 044010 (2016).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated optical memory based on laser-written waveguides,” Phys. Rev. Applied 5(5), 054013 (2016).
[Crossref]

Phys. Rev. B (3)

T. Böttger, C. Thiel, R. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79(11), 115104 (2009).
[Crossref]

S. R. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78(8), 085410 (2008).
[Crossref]

T. Böttger, Y. Sun, C. Thiel, and R. Cone, “Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5μm,” Phys. Rev. B 74(7), 075107 (2006).
[Crossref]

Phys. Rev. Lett. (3)

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref] [PubMed]

A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96(4), 043602 (2006).
[Crossref] [PubMed]

S. Marzban, J. G. Bartholomew, S. Madden, K. Vu, and M. J Sellars, “Observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide,” Phys. Rev. Lett. 115(1), 013601 (2015).
[Crossref] [PubMed]

Other (1)

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” http://arxiv.org/abs/1611.04315 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) In-plane cross section of the ring resonator mode, with waveguide in light blue along the right. (b) left: Radial cross section of the amorphous silicon (α-Si) ring on erbium-doped YSO, showing the hybrid structure. The ring is 380 nm tall and 480 nm wide with an outer radius of 11.0 microns. center: the mode profile for the vertical component of the electric field. right: plot of the vertical component of the electric field and the relative permittivity as a function of the vertical displacement through the waveguide center.

Fig. 2
Fig. 2

(a) Hybrid fabrication procedure starts with the deposition of amorphous silicon, which is patterned via electron beam lithography and dry etching. (b) SEM micrograph of the completed device with input and output grating couplers, and laser beams sketched in as a visual aid. (c) Depiction of the confocal setup used to characterize the sample. (d) Transmission spectrum through the ring, fit with a Lorentzian curve illustrating 1.4 GHz linewidth, corresponding to a quality factor of 112,000.

Fig. 3
Fig. 3

(a) Multiple spectra showing the tuning procedure as gas is slowly let into the cryostat. The cavity transmission peak is seen moving through the ion absorption dip. (b) Transmission data compared to a simulation using a Lorentzian cavity resonance interacting with a Gaussian distribution of ions and a phase term to account for Fano interference from a spurious reflection. The simulation was fit for amplitude, detuning, and the Fano phase, using measured values for inhomogeneous broadening, and cavity linewidth, with the simulated total coupling rate.

Fig. 4
Fig. 4

(a) Photoluminescence (PL) decay from the cavity-coupled ions for a detuning of 1.13 GHz. Data has been fit using the simulated PL, scaled with a background, and a single exponential with a fitted lifetime, amplitude, and background. Inset shows normalized PL from ions coupled to a waveguide vs. ions coupled to the cavity. (b) Simulated PL as a function of time for a range of ion-cavity detunings. Detuning selected for subfigure (a) is highlighted as a dashed white line. (c) Single exponential lifetime fits from various detunings with a curve of lifetime vs. detuning generated using an averaged coupling strength across all ions. The black ‘x’ corresponds to the fit from (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = a | b e i φ + κ 2 i ( ω ω cavity ) κ 2 i W ( ω ω ions ) | 2 ,
W ( ω ) = i π ln 2 Ω 2 Δ exp [ ( ω + i γ / 2 Δ / ln 2 ) 2 ] erfc ( i ( ω + i γ / 2 ) Δ / ln 2 )
g ion ( r ) = g 0 | E z ( r ) max ( E z ) | = μ n α Si [ ω 2 0 V mode ] 1 / 2 | E z ( r ) max ( E z ) | ,
g eff 2 π = [ YSO | E z ( r ) | 2 ( g ion ( r ) 2 π ) 2 ρ d V YSO | E z ( r ) | 2 ρ d V ] 1 / 2 = 0.211 MHz ,

Metrics