Abstract

We demonstrate, what is to our knowledge, the shortest pulses directly generated to date from a solid-state laser, mode locked with a graphene saturable absorber (GSA). In the experiments, a low-threshold diode-pumped Cr3+:LiSAF laser was used near 850 nm. At a pump power of 275 mW provided by two pump diodes, the Cr3+:LiSAF laser produced nearly transform-limited, 19-fs pulses with an average output power of 8.5 mW. The repetition rate was around 107 MHz, corresponding to a pulse energy and peak power of 79 pJ and 4.2 kW, respectively. Once mode locking was initiated with the GSA, stable, uninterrupted femtosecond pulse generation could be obtained. In addition, the femtosecond output of the laser could be tuned from 836 nm to 897 nm with pulse durations in the range of 80-190 fs. We further performed detailed mode locking initiation tests across the full cavity stability range of the laser to verify that pulse generation was indeed started by the GSA and not by Kerr lens mode locking.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser

Sadao Uemura and Kenji Torizuka
Opt. Lett. 24(11) 780-782 (1999)

Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser

Sarper Ozharar, Isinsu Baylam, M. Natali Cizmeciyan, Osman Balci, Ercag Pince, Coskun Kocabas, and Alphan Sennaroglu
J. Opt. Soc. Am. B 30(5) 1270-1275 (2013)

Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration

Nikolai Tolstik, Evgeni Sorokin, and Irina T. Sorokina
Opt. Express 22(5) 5564-5571 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  2. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  3. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  4. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
    [Crossref] [PubMed]
  5. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
    [Crossref]
  6. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
    [Crossref] [PubMed]
  7. J. Ma, H. Huang, K. Ning, X. Xu, G. Xie, L. Qian, K. P. Loh, and D. Tang, “Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser,” Opt. Lett. 41(5), 890–893 (2016).
    [Crossref] [PubMed]
  8. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014).
    [Crossref] [PubMed]
  9. U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
    [Crossref] [PubMed]
  10. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
    [Crossref]
  11. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(1), 3472–3473 (2000).
    [Crossref]
  12. F. Canbaz, N. Kakenov, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked Cr:LiSAF laser at 850 nm,” Opt. Lett. 40(17), 4110–4113 (2015).
    [Crossref] [PubMed]
  13. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
    [Crossref]
  14. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  15. I. T. Sorokina and K. L. Vodopyanov, Solid-State Mid-Infrared Laser Sources, Topics in Applied Optics (Springer, 2003), Vol. 89.

2016 (1)

2015 (2)

2014 (1)

2013 (1)

2012 (3)

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

2010 (1)

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

2008 (2)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

2007 (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
[Crossref]

2000 (2)

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(1), 3472–3473 (2000).
[Crossref]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Avouris, P.

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Baali, I.

Bae, S.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Balci, S.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Balembois, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
[Crossref]

Canbaz, F.

Carbone, F.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Cizmeciyan, M. N.

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Demirbas, U.

Druon, F.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Georges, P.

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
[Crossref]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Hong, B. H.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Huang, H.

Kakenov, N.

Kim, J. W.

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kocabas, C.

F. Canbaz, N. Kakenov, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked Cr:LiSAF laser at 850 nm,” Opt. Lett. 40(17), 4110–4113 (2015).
[Crossref] [PubMed]

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Kuzmenko, A. B.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Loh, K. P.

Ma, J.

Ning, K.

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Qian, L.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Rotermund, F.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Salihoglu, O.

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Sennaroglu, A.

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Tang, D.

Tolstik, N.

Torizuka, K.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(1), 3472–3473 (2000).
[Crossref]

Uemura, S.

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(1), 3472–3473 (2000).
[Crossref]

van der Marel, D.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

van Heumen, E.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Xie, G.

Xu, X.

Yeom, D.-I.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012).
[Crossref]

Appl. Phys. Lett. (2)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100(21), 213110 (2012).
[Crossref]

C. R. Phys. (1)

F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8(2), 153–164 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr: LiSAF laser,” Jpn. J. Appl. Phys. 39(1), 3472–3473 (2000).
[Crossref]

Nano Lett. (1)

P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref] [PubMed]

Other (1)

I. T. Sorokina and K. L. Vodopyanov, Solid-State Mid-Infrared Laser Sources, Topics in Applied Optics (Springer, 2003), Vol. 89.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the diode-pumped, GSA mode-locked Cr3+:LiSAF laser.
Fig. 2
Fig. 2 (a) Continuous-wave (cw) power efficiency curves of the Cr3+:LiSAF laser with different output couplers. (b) Cw efficiency data of the laser containing a bare infrasil substrate and infrasil with graphene. The output coupler has 0.5% transmission. The cavity also contains the prism pair and infrasil substrate in all cases.
Fig. 3
Fig. 3 (a) Optical spectrum and estimated group delay dispersion (GDD), (b) interferometric autocorrelation, and (c)radio frequency spectrum of the generated pulses with GSA-mode-locked Cr3+:LiSAF laser at the input pump power of 275 mW.
Fig. 4
Fig. 4 Femtosecond tuning data of the GSA-mode-locked Cr3+:LiSAF laser.
Fig. 5
Fig. 5 Measured output power of the Cr3+:LiSAF laser as a function of the M2 position with (a) a bare infrasil substrate and (b) an infrasil substrate with graphene. Mode locking initiation maps of the resonator with (c) a bare infrasil substrate and (d) an infrasil substrate with graphene.

Metrics