Abstract

We wrap a thin-film luminescent concentrator (LC) - a flexible and transparent plastic foil doped with fluorescent dye particles - around an object to obtain images of the object under varying synthetic lighting conditions and without lenses. These images can then be used for computational relighting and depth reconstruction. An LC is an efficient two-dimensional light guide that allows photons to be collected over a wide solid angle, and through multiple overlapping integration areas simultaneously. We show that conventional photodetectors achieve a higher signal-to-noise ratio when equipped with an LC than in direct measurements. Efficient light guidance in combination with computational imaging approaches, such as presented in this article, can lead to novel optical sensors that collect light in a structured way and within a wide solid angle rather than unstructured through narrow apertures. This enables flexible, scalable, transparent, and lens-less thin-film image and depth sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators

Alexander Koppelhuber and Oliver Bimber
Opt. Express 21(4) 4796-4810 (2013)

A transparent thin-film sensor for multi-focal image reconstruction and depth estimation

Alexander Koppelhuber, Clemens Birklbauer, Shahram Izadi, and Oliver Bimber
Opt. Express 22(8) 8928-8942 (2014)

Thin-film camera using luminescent concentrators and an optical Söller collimator

Alexander Koppelhuber and Oliver Bimber
Opt. Express 25(16) 18526-18536 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.
  2. A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Optics express 21, 4796–4810 (2013).
    [Crossref] [PubMed]
  3. A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Optics Express 23, 33713–33720 (2015).
    [Crossref]
  4. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.
  5. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
    [Crossref]
  6. M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
    [Crossref]
  7. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref] [PubMed]
  8. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
    [Crossref] [PubMed]
  9. Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
    [Crossref]
  10. G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
    [Crossref] [PubMed]
  11. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics letters 41, 2497–2500 (2016).
    [Crossref] [PubMed]
  12. D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on 52, 1289–1306 (2006).
    [Crossref]
  13. R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine 24, 118–121 (2007).
    [Crossref]
  14. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref] [PubMed]
  15. P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.
  16. V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.
  17. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.
  18. H. A. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and Statistical Computing 13, 631–644 (1992).
    [Crossref]
  19. M. Slaney and A. Kak, “Principles of computerized tomographic imaging,” SIAM, Philadelphia (1988).
  20. A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging 6, 81–94 (1984).
    [Crossref] [PubMed]
  21. R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
    [Crossref]
  22. R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
    [Crossref] [PubMed]
  23. Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
    [Crossref] [PubMed]
  24. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
    [Crossref]
  25. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
    [Crossref]

2016 (4)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics letters 41, 2497–2500 (2016).
[Crossref] [PubMed]

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

2015 (1)

A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Optics Express 23, 33713–33720 (2015).
[Crossref]

2013 (4)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Optics express 21, 4796–4810 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

2010 (1)

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

2008 (3)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

2007 (1)

R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine 24, 118–121 (2007).
[Crossref]

2006 (1)

D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on 52, 1289–1306 (2006).
[Crossref]

2005 (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

1999 (1)

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

1992 (1)

H. A. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and Statistical Computing 13, 631–644 (1992).
[Crossref]

1984 (1)

A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging 6, 81–94 (1984).
[Crossref] [PubMed]

Andersen, A.

A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging 6, 81–94 (1984).
[Crossref] [PubMed]

Asif, M. S.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Ayremlou, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Baraniuk, R.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine 24, 118–121 (2007).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Bartu, P.

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

Bauer, S.

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

Bimber, O.

A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Optics Express 23, 33713–33720 (2015).
[Crossref]

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Optics express 21, 4796–4810 (2013).
[Crossref] [PubMed]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Brady, D.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Chabinyc, M. L.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

Chen, B.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Cryer, J. E.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

Debevec, P.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on 52, 1289–1306 (2006).
[Crossref]

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Duiker, H.-P.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Dutré, P.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.

Edgar, M. P.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Garg, G.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Gibson, G. M.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

Hawkins, T.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Horowitz, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Iba, S.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Jonathan, P.

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Kak, A.

A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging 6, 81–94 (1984).
[Crossref] [PubMed]

M. Slaney and A. Kak, “Principles of computerized tomographic imaging,” SIAM, Philadelphia (1988).

Kato, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Kawaguchi, H.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Koeppe, R.

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

Koppelhuber, A.

A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Optics Express 23, 33713–33720 (2015).
[Crossref]

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Optics express 21, 4796–4810 (2013).
[Crossref] [PubMed]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Lensch, H.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Levoy, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Li, G.

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Lipworth, G.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Liu, L.

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Marschner, S. R.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Masselus, V.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Neulinger, A.

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

Ng, T. N.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Noguchi, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Padgett, M. J.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Peers, P.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.

Radwell, N.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Sagar, M.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Sakurai, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Sambandan, S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Sankaranarayanan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Sarokin, W.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Sekitani, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Sen, P.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

Shah, M.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

Slaney, M.

M. Slaney and A. Kak, “Principles of computerized tomographic imaging,” SIAM, Philadelphia (1988).

Smith, D. R.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

Someya, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

Street, R. A.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Sun, B.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

Takbar, D.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Tchou, C.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

Tsai, P.-S.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

Van der Vorst, H. A.

H. A. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and Statistical Computing 13, 631–644 (1992).
[Crossref]

Veeraraghavan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

Wang, W.

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Wang, Y.

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Welsh, S. S.

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Willems, Y. D.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.

Wong, W. S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Xu, J.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Yang, G.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Yang, W.

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

Yao, J.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

Zhang, T.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Zhang, Y.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

Zhang, Z.

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics letters 41, 2497–2500 (2016).
[Crossref] [PubMed]

Zheng, Z.

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Zhong, J.

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics letters 41, 2497–2500 (2016).
[Crossref] [PubMed]

Applied Physics Letters (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Applied Physics Letters 93, 121105 (2008).
[Crossref]

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Applied Physics Letters 92, 213303 (2008).
[Crossref]

Electron Devices, IEEE Transactions on (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” Electron Devices, IEEE Transactions on 52, 2502–2511 (2005).
[Crossref]

IEEE signal processing magazine (2)

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25, 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine 24, 118–121 (2007).
[Crossref]

IEEE transactions on pattern analysis and machine intelligence (1)

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading: a survey,” IEEE transactions on pattern analysis and machine intelligence 21, 690–706 (1999).
[Crossref]

Information Theory, IEEE Transactions on (1)

D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on 52, 1289–1306 (2006).
[Crossref]

Journal of Optics (1)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” Journal of Optics 18, 035203 (2016).
[Crossref]

Nanotechnology (1)

Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area wse2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref] [PubMed]

Optics Express (2)

R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Optics Express 18, 2209–2218 (2010).
[Crossref] [PubMed]

G. Li, W. Wang, Y. Wang, W. Yang, and L. Liu, “Single-pixel camera with one graphene photodetector,” Optics express 24, 400–408 (2016).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Optics express 21, 23068–23074 (2013).
[Crossref] [PubMed]

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Optics express 21, 4796–4810 (2013).
[Crossref] [PubMed]

A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Optics Express 23, 33713–33720 (2015).
[Crossref]

Optics letters (1)

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Optics letters 41, 2497–2500 (2016).
[Crossref] [PubMed]

Science (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref] [PubMed]

SIAM Journal on scientific and Statistical Computing (1)

H. A. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems,” SIAM Journal on scientific and Statistical Computing 13, 631–644 (1992).
[Crossref]

Ultrasonic imaging (1)

A. Andersen and A. Kak, “Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm,” Ultrasonic imaging 6, 81–94 (1984).
[Crossref] [PubMed]

Other (6)

M. Slaney and A. Kak, “Principles of computerized tomographic imaging,” SIAM, Philadelphia (1988).

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in “Proceedings of the 27th annual conference on Computer graphics and interactive techniques,” (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 145–156.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4d incident light fields,” in “ACM Transactions on Graphics (TOG),”, vol. 22 (ACM, 2003), vol. 22, pp. 613–620.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. Lensch, “Dual photography,” in “ACM Transactions on Graphics (TOG),”, vol. 24 (ACM, 2005), vol. 24, pp. 745–755.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in “Electronic Imaging 2006,” (International Society for Optics and Photonics, 2006), pp. 606509.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in “2015 IEEE International Conference on Computer Vision Workshop (ICCVW),” (2015), pp. 663–666.

Supplementary Material (5)

NameDescription
» Visualization 1: MP4 (183 KB)      Random speckle illumination projected onto the object through a hole in the LC film.
» Visualization 2: MP4 (290 KB)      Reconstructed basis illumination images (left) with corresponding integration area (right).
» Visualization 3: MP4 (503 KB)      Rectified basis illumination images (left) with corresponding square lighting area (right).
» Visualization 4: MP4 (117 KB)      Computational relighting results (left) with corresponding lighting images (right).
» Visualization 5: MP4 (327 KB)      Depth reconstruction results (right) with ground through (left).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Thin-film LC sensor prototype. (A) Luminescent concentrator foil wrapped around an object. (B) The aperture structure cut into the LC material at the edges of the foil (blue is removed from the LC material and blocks light transport) allows measurement over limited integration areas (gray) in various positions and directions. Optical fibers transport the integral signals to line scan cameras for measurement. (C) Random speckle illumination is projected onto the object through a hole in the film (the LC foil is covered by an opaque film to block stray light from the environment). See Visualization 1.
Fig. 2
Fig. 2 Reconstructed basis illumination images. Each image is reconstructed with Eq. (1) from the measurements of one integration area that causes the synthetic shading on the object. The center images (blue frame) are reconstructions of the integration area cut off by the hole in the LC foil through which the speckle patterns are projected. See Visualization 2.
Fig. 3
Fig. 3 Rectified basis illumination images. Images are computed using Eq. (3) from the images shown in Fig. 2 and for a synthetic 7 mm × 7 mm square lighting area moving from top left to bottom right on a uniform 16 × 16 grid across the cylindrical sensor surface. See Visualization 3.
Fig. 4
Fig. 4 Relighting and depth reconstruction results. (A) Computational relighting examples for synthetic area light sources (colored strips reshaped on the LC surface, shown on the right). See Visualization 4. (B) Depth map reconstructed from the rectified basis illumination images in Fig. 3. (C) Ground-truth depth map reconstructed from the ideal (simulated) rectified basis illumination images. The same shape-from-shading algorithm was applied in both reconstructions. See Visualization 5. (D) Depth reconstruction error visualized as 3D surface overlay (top: yellow is ground truth, blue is reconstructed) and color map (bottom).
Fig. 5
Fig. 5 S/N gain experiment. The average of 16 integral measurements (blue) taken through the LC foil are compared to the average of 20 point measurements (green) taken on the LC surfaces under identical conditions (same photodetectors, optical fibers, and lighting condition). Their ratio (1.636) represents the S/N gain for read-noise limited conditions. All values are normalized to the measured maximum.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s i = P b i + e i ,
B = B T T
b j = B T l j , [ b j 1 b j 2 b j 3 b j 4 b j n ] = [ B 11 B 21 B s 1 B 12 B 22 B s 2 B 13 B 23 B s 3 B 14 B 24 B s 4 B 1 n B 2 n B s n ] [ T 11 T 21 T m 1 T 12 T 22 T m 2 T 1 s T 2 s T m s ] [ l j 1 l j 2 l j m ] ,
α ϕ = 0 β δ = 0 d e μ δ d t d ϕ = α 2 π β 360 ° 1 e μ d μ ,
I a I e = e μ δ δ ,
I a I e = α ϕ = 0 β δ = 0 d δ e μ δ δ d t d ϕ = α ϕ = 0 β δ = 0 d e μ δ d t d ϕ ,
I a I e = α ϕ = 0 β [ e μ δ μ ] 0 d d ϕ = α ϕ = 0 β 1 e μ s μ d ϕ ,
I a I e = 2 π β 360 ° 1 e μ δ μ ,

Metrics