Abstract

In this study, we numerically and experimentally investigate application of birefringent filters (BRFs) as frequency selective elements in multicolor lasers. A BRF plate made out of crystalline quartz with an arbitrarily oriented optical axis has been explored. Simulation results have shown that compared to regular BRFs where the optical axis lies in the plane of the plates surface, a BRF with an optical axis pointing out of its surface enables design flexibility in filter parameters, providing access to a wider set of free spectral range and bandwidth values. As a result, multicolor operation could be obtained in many wavelength pairs using a single BRF plate. In the experiments a 3-mm thick quartz BRF with an optical axis 45° to the surface plane has been used. With Cr:Nd:GSGG as a laser medium two-color and three-color cw laser operation has been demonstrated in 11 and 3 different transition combinations, respectively. Moreover, two-color laser operation has been demonstrated in 10 different wavelength pairs in Cr:LiSAF. To our knowledge, this study is the first detailed investigation and experimental demonstration of BRFs with tilted optical axis for multicolor operation of solid-state lasers. Compared to other methods, BRFs enable a rich selection of transition pairs and also the ratio of the power in each line could be regulated by fine adjustment of the rotation angle. Implementation of tilted-axis BRFs should boost development of efficient and low-cost multicolor lasers in other gain media as well.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
    [Crossref]
  2. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [Crossref] [PubMed]
  3. P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
    [Crossref]
  4. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
    [Crossref] [PubMed]
  5. M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
    [Crossref]
  6. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [Crossref] [PubMed]
  7. C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
    [Crossref]
  8. R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
    [Crossref]
  9. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  10. J. B. Abshire, “Pulsed multiwavelength laser ranging system for measuring atmospheric delay,” Appl. Opt. 19(20), 3436–3440 (1980).
    [Crossref] [PubMed]
  11. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [Crossref] [PubMed]
  12. L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
    [Crossref] [PubMed]
  13. Y. Tan, F. Chen, J. R. Vázquez de Aldana, H. Yu, and H. Zhang, “Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide,” Opt. Express 21(19), 22263–22268 (2013).
    [Crossref] [PubMed]
  14. B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
    [Crossref]
  15. Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [Crossref]
  16. J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
    [Crossref]
  17. H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
    [Crossref] [PubMed]
  18. H. Y. Shen, W. X. Lin, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, R. F. Wu, and Q. J. Ye, “1079.5- and 1341.4-nm: larger energy from a dual-wavelength Nd:YAIO3 pulsed laser,” Appl. Opt. 32(30), 5952–5957 (1993).
    [Crossref] [PubMed]
  19. A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
    [Crossref]
  20. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref] [PubMed]
  21. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [Crossref] [PubMed]
  22. H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
    [Crossref]
  23. L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
    [Crossref]
  24. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30(27), 3930–3937 (1991).
    [Crossref] [PubMed]
  25. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]
  26. A. Leitenstorfer, C. Fürst, and A. Laubereau, “Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett. 20(8), 916–918 (1995).
    [Crossref] [PubMed]
  27. R. Akbari, H. Zhao, and A. Major, “High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser,” Opt. Lett. 41(7), 1601–1604 (2016).
    [Crossref] [PubMed]
  28. C. G. Treviño-Palacios, C. Wetzel, and O. J. Zapata-Nava, “Design of a Dual Wavelength Birefringent Filter ” in RIAO/OPTILAS2007 (AIP Conference Proceedings 2007), 392–397.
  29. C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
    [Crossref]
  30. A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
    [Crossref]
  31. D. R. Preuss and J. L. Gole, “Three-stage birefringent filter tuning smoothly over the visible region: theoretical treatment and experimental design,” Appl. Opt. 19(5), 702–710 (1980).
    [Crossref] [PubMed]
  32. S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
    [Crossref]
  33. S. Zhu, “Birefringent filter with tilted optic axis for tuning dye lasers: theory and design,” Appl. Opt. 29(3), 410–415 (1990).
    [Crossref] [PubMed]
  34. X. Wang and J. Yao, “Transmitted and tuning characteristics of birefringent filters,” Appl. Opt. 31(22), 4505–4508 (1992).
    [Crossref] [PubMed]
  35. H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
    [Crossref]
  36. C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
    [Crossref]
  37. Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
    [Crossref] [PubMed]
  38. J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
    [Crossref]
  39. C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
    [Crossref]
  40. G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
    [Crossref]
  41. Y.-F. Chen and S. W. Tsai, “Diode-pumped -switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27(6), 397–399 (2002).
    [Crossref] [PubMed]
  42. T. Waritanant and A. Major, “Dual-Wavelength CW Operations at 1064.1 & 1073.1 nm and 1064.1 & 1085.3 nm of Nd:YVO4 Laser,” in CLEO, (OSA, 2014), p. JW2A.82.
  43. N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals,” Laser Phys. 20(1), 215–221 (2010).
    [Crossref]
  44. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [Crossref] [PubMed]
  45. Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
    [Crossref]
  46. R. Zhou, W. Wen, Z. Cai, X. Ding, P. Wang, and J. Yao, “Efficient stable simultaneous CW dual-wavelength diode-end-pumped Nd:YAG laser operating at 1.319 and 1.338 μm,” Chin. Opt. Lett. 3, 597–599 (2005).
  47. P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
    [Crossref]
  48. A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
    [Crossref]
  49. X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
    [Crossref]
  50. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, X. Zhang, and M. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35(11), 1801–1803 (2010).
    [Crossref] [PubMed]
  51. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
    [Crossref]
  52. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
    [Crossref] [PubMed]
  53. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  54. Y. Zhao, Z. Wang, H. Yu, X. Xu, J. Xu, and X. Xu, “Efficient multi-wavelength lasers made of Nd:GdLuAG crystal,” Chin. Opt. Lett. 13(2), 021404 (2015).
    [Crossref]
  55. Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).
  56. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
    [Crossref] [PubMed]
  57. J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
    [Crossref]
  58. J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
    [Crossref]
  59. U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
    [Crossref] [PubMed]
  60. F. Canbaz, E. Beyatli, L.-J. Chen, A. Sennaroglu, F. X. Kärtner, and U. Demirbas, “Highly efficient and robust operation of Kerr-lens mode-locked Cr:LiSAF lasers using gain-matched output couplers,” Opt. Lett. 39(2), 327–330 (2014).
    [Crossref] [PubMed]
  61. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Femtosecond tuning of Cr:Colquiriite lasers with AlGaAs-based saturable Bragg reflectors,” J. Opt. Soc. Am. B 28(5), 986–993 (2011).
    [Crossref]

2016 (1)

2015 (5)

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, X. Xu, J. Xu, and X. Xu, “Efficient multi-wavelength lasers made of Nd:GdLuAG crystal,” Chin. Opt. Lett. 13(2), 021404 (2015).
[Crossref]

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
[Crossref] [PubMed]

2014 (5)

F. Canbaz, E. Beyatli, L.-J. Chen, A. Sennaroglu, F. X. Kärtner, and U. Demirbas, “Highly efficient and robust operation of Kerr-lens mode-locked Cr:LiSAF lasers using gain-matched output couplers,” Opt. Lett. 39(2), 327–330 (2014).
[Crossref] [PubMed]

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

2013 (5)

C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
[Crossref]

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, H. Yu, and H. Zhang, “Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide,” Opt. Express 21(19), 22263–22268 (2013).
[Crossref] [PubMed]

2012 (1)

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

2011 (3)

2010 (12)

L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
[Crossref] [PubMed]

H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
[Crossref] [PubMed]

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[Crossref] [PubMed]

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref] [PubMed]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref] [PubMed]

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
[Crossref]

N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals,” Laser Phys. 20(1), 215–221 (2010).
[Crossref]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, X. Zhang, and M. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35(11), 1801–1803 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2004 (3)

P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
[Crossref]

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

2002 (2)

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
[Crossref]

Y.-F. Chen and S. W. Tsai, “Diode-pumped -switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27(6), 397–399 (2002).
[Crossref] [PubMed]

2000 (1)

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

1999 (3)

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[Crossref] [PubMed]

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

1997 (1)

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

1995 (1)

1993 (1)

1992 (1)

1991 (1)

1990 (1)

1985 (1)

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

1980 (2)

1974 (1)

A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
[Crossref]

Abshire, J. B.

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Aiping, Y.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Akbari, R.

Arcangeli, A.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Baali, I.

Bai, X.

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
[Crossref]

Beyatli, E.

Bloom, A. L.

A. L. Bloom, “Modes of a laser resonator containing tilted birefringent plates,” J. Opt. Soc. Am. B 64(4), 447–452 (1974).
[Crossref]

Brenier, A.

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

Bruneau, D.

Bu, Y. K.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Cai, G. X.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Cai, Z.

Cai, Z. P.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Canbaz, F.

Capmany, J.

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

Carrasco, S.

Cazeneuve, H.

Chang, C. C.

C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
[Crossref]

Chang, F.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Chao, H.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Charrière, F.

Chen, F.

Chen, J. F.

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

Chen, L.

Chen, L. J.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Chen, L.-J.

Chen, T.

Chen, Y. F.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
[Crossref]

Chen, Y.-F.

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

Y.-F. Chen and S. W. Tsai, “Diode-pumped -switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27(6), 397–399 (2002).
[Crossref] [PubMed]

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

Chiang, S. Y.

Cho, C. Y.

C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
[Crossref]

Chow, C. W.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
[Crossref]

Chow, Y. T.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Colomb, T.

Cong, Z.

Cuche, E.

Danson, F. M.

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

De Tan, W.

Demirbas, U.

Depeursinge, C.

Ding, X.

Dong, C.-M.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Du, J.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Emery, Y.

Fallahi, M.

Fan, Y. X.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Feng, Z.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Fernandez-Pousa, C. R.

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

Fu, X.-W.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Fujimoto, J. G.

Fürst, C.

Ganikhanov, F.

Gaulton, R.

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Gole, J. L.

Gu, P.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Gunawan, O.

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Guo, J.-L. H. S.-Y.

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

Guo, L.

Guo, S.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

Hang, Y.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

He, J.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

He, J. L.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

He, J.-L.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
[Crossref] [PubMed]

Hongwei, C.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Hou, J.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Hsinchu, T.

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

Huang, C. H.

Huang, H.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

Huang, H.-T.

Huang, Y. J.

Huang, Y.-J.

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

Ito, H.

Jia, Z.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Jia, Z.-T.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Jiang, M.

Jiang, M. H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Jiang, P.

Kärtner, F. X.

Katz, M.

Kawase, K.

Ke, H.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Killinger, D. K.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Koch, M.

Koch, S. W.

Kolodziejski, L. A.

Kolokolstev, O.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Kong, J.

Kong, L. C.

Kopf, D.

Kühn, J.

Kunpeng, L.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Lan, R.

L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
[Crossref] [PubMed]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[Crossref]

Laubereau, A.

Leitenstorfer, A.

Li, C.

P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
[Crossref]

Li, D.

Li, G.

Li, P.

P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
[Crossref]

Li, Y.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Liang, H. C.

Lin, W. X.

Liu, H.

Liu, H. F.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

Liu, M. G.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Liu, S.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Liu, S.-D.

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

Liu, X. M.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Liu, X.-M.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Liu, Z. T.

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

Loth, C.

Lou, C.

Lou, F.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Lovold, S.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Lu, J. R.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Lü, Y. F.

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

Luo, D.

Luo, H.

Maestre, H.

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

Major, A.

Marquet, P.

Mashhadi, L.

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

Mejia-Uriarte, E. V.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Menwk, N.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Mizuno, M.

Moloney, J. V.

Montfort, F.

Moulton, P. F.

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

Nakamura, S.

Novak, D.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

Ogawa, T.

Ogawa, Y.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

Pan, C.-L.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Pan, S.

Pavel, N.

N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals,” Laser Phys. 20(1), 215–221 (2010).
[Crossref]

Paz-Martinez, G.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Pelon, J.

Pelusi, M. D.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

Pereda, J. A.

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

Petrich, G. S.

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Preuss, D. R.

Qian, L. J.

Qin, Z. P.

Qureshi, N.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Ramirez, F. A.

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Sakai, K.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Scheller, M.

Seitz, W.

Sennaroglu, A.

Shao, Z. S.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Shayeganrad, G.

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

Shen, H. Y.

Shen, Y.

Shi, Z.

Sohma, S.

Sun, J.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Sunney Xie, X.

Takahashi, H.

Tan, Y.

Tang, C. Y.

Tang, C.-Y.

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

Tang, D.

Tang, D. Y.

Tani, M.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Taniuchi, T.

Tao, X.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Tao, X. T.

Tao, X.-T.

Tashiro, H.

Tian, Y.

Tonelli, M.

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

Torrogrosa, A. J.

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

Trevino-Palacios, C. G.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Tsai, S. W.

Tsang, H. K.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
[Crossref]

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

Tzeng, Y. S.

Tzeng, Y.-S.

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

Urata, Y.

Vázquez de Aldana, J. R.

Wada, S.

Walsh, B. M.

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Wang, C. Q.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Wang, H. T.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Wang, J.

Wang, J. Y.

Wang, P.

Wang, Q.

Wang, R. H.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Wang, R.-H.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Wang, X.

Wang, X. Z.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Wang, Y.

Wang, Z.

Wang, Z. F.

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

Wang, Z. W.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Wang, Z.-W.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Wen, W.

Wong, C. S.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
[Crossref]

Wu, B.

B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
[Crossref] [PubMed]

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

Wu, H.

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
[Crossref]

Wu, K.

Wu, R. F.

Xia, J.

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

Xie, G. Q.

Xu, C.

Xu, D.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Xu, J.

Xu, J.-L.

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
[Crossref] [PubMed]

Xu, X.

Xu, X. D.

Yang, D.

Yang, H.

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

Yang, J.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

Yang, J.-F.

Yang, K.-J.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

Yang, Y.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

Yanlong, S.

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Yao, B.

Yao, J.

Yarborough, J. M.

Ye, Q. J.

Yoshioka, H.

Yu, G. F.

Yu, H.

Yu, H. H.

Yu, Y.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[Crossref] [PubMed]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[Crossref]

Yuan, D. R.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Yuan, P.

Zapata-Nava, O. J.

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

Zeng, R. R.

Zeng, Z. D.

Zhang, B.

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

Zhang, B. T.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Zhang, B.-T.

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
[Crossref] [PubMed]

Zhang, B.-Y.

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

Zhang, C.

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
[Crossref]

Zhang, G. H.

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Zhang, H.

Zhang, H. J.

Zhang, J.

Zhang, L. H.

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Zhang, W. J.

Zhang, X.

Zhang, X. H.

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

Zhang, Z.

P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
[Crossref]

Zhao, H.

Zhao, X.

Zhao, Y.

Zheng, L. H.

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

Zhou, R.

Zhou, Y. P.

Zhu, S.

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

Zhuang, S.

Zuo, C.-H.

Appl. Opt. (6)

Appl. Phys. B (6)

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

A. Agnesi, F. Pirzio, G. Reali, A. Arcangeli, M. Tonelli, Z. Jia, and X. Tao, “Multi-wavelength diode-pumped Nd:LGGG picosecond laser,” Appl. Phys. B 99(1-2), 135–140 (2010).
[Crossref]

J.-L. Xu, J.-L. H. S.-Y. Guo, B.-Y. Zhang, Y. Yang, H. Yang, and S.-D. Liu, “Dual-wavelength asynchronous and synchronous mode-locking operation by a Nd:CLTGG disordered crystal,” Appl. Phys. B 107(1), 53–58 (2012).
[Crossref]

B. Zhang, S. Guo, J. He, S. Liu, J. Yang, J. Xu, and H. Huang, “Tri-wavelength laser with Nd:CLTGG crystal,” Appl. Phys. B 105(4), 807–811 (2011).
[Crossref]

Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[Crossref]

J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79(3), 301–304 (2004).
[Crossref]

Appl. Phys. Lett. (3)

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[Crossref]

A. Brenier, C. Tu, Z. Zhu, and B. Wu, “Red-green-blue generation from a lone dual-wavelength GdAl3(BO3)4:Nd3+ laser,” Appl. Phys. Lett. 84(12), 2034–2036 (2004).
[Crossref]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[Crossref]

Chin. Opt. Lett. (2)

IEEE J. Quantum Electron. (2)

S. Lovold, P. F. Moulton, D. K. Killinger, and N. Menwk, “Frequency Tuning Characteristics of a -Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. 21(3), 202–208 (1985).
[Crossref]

H. Maestre, A. J. Torrogrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany, “Dual-wavelegth Cr+3:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum Electron. 46(11), 1681–1685 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-J. Huang, T. Hsinchu, Y.-S. Tzeng, C.-Y. Tang, and Y.-F. Chen, “Efficient Dual-Wavelength Synchronously Mode- Locked Picosecond Laser Operating on the 4F 3/2 → 4I11/2 Transition With Compactly Combined Dual Gain Media,” IEEE J. Sel. Top. Quantum Electron. 21, 1100107 (2015).

IEEE Photon. Technol. Lett. (1)

J. Hou, X.-W. Fu, J.-L. He, Y. Yang, B.-T. Zhang, Z.-W. Wang, K.-J. Yang, Z.-T. Jia, R.-H. Wang, X.-M. Liu, C.-M. Dong, and X. Tao, “Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM,” IEEE Photon. Technol. Lett. 26(1), 40–42 (2014).
[Crossref]

IEEE Photonics J. (1)

X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry–Perot Band-pass Filter as Output Mirror,” IEEE Photonics J. 6(4), 1501607 (2014).
[Crossref]

J. Eur. Opt. Soc. (1)

C. G. Trevino-Palacios, O. J. Zapata-Nava, E. V. Mejia-Uriarte, N. Qureshi, G. Paz-Martinez, and O. Kolokolstev, “Dual wavelength continuous wave laser using a birefringent filter,” J. Eur. Opt. Soc. 8, 13021 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent cw-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[Crossref]

Laser Phys. (3)

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Y. F. Lü, J. Xia, X. H. Zhang, Z. T. Liu, and J. F. Chen, “Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals,” Laser Phys. 20(4), 737–739 (2010).
[Crossref]

N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals,” Laser Phys. 20(1), 215–221 (2010).
[Crossref]

Laser Phys. Lett. (2)

J. Hou, L. H. Zheng, J. L. He, J. Xu, B. T. Zhang, Z. W. Wang, F. Lou, R. H. Wang, and X. M. Liu, “A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror,” Laser Phys. Lett. 11(3), 035803 (2014).
[Crossref]

C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals,” Laser Phys. Lett. 10(4), 045805 (2013).
[Crossref]

Opt. Commun. (4)

P. Li, D. Li, C. Li, and Z. Zhang, “Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling,” Opt. Commun. 235(1-3), 169–174 (2004).
[Crossref]

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209(4-6), 329–334 (2002).
[Crossref]

H. Wu, C. Zhang, and X. Bai, “A complete description of polarization and transmission of nonnormal incident rays in a uniaxial birefringent plate with arbitrary optic axis,” Opt. Commun. 283(21), 4129–4134 (2010).
[Crossref]

C. Q. Wang, Y. T. Chow, D. R. Yuan, D. Xu, G. H. Zhang, M. G. Liu, J. R. Lu, Z. S. Shao, and M. H. Jiang, “CW dual-wavelength Nd:YAG laser at 946 and 938.5 nm and intracavity nonlinear frequency conversion with a CMTC crystal,” Opt. Commun. 165(4-6), 231–235 (1999).
[Crossref]

Opt. Express (9)

Z. Cong, D. Tang, W. De Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
[Crossref] [PubMed]

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref] [PubMed]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref] [PubMed]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[Crossref] [PubMed]

H.-T. Huang, J.-L. He, B.-T. Zhang, J.-F. Yang, J.-L. Xu, C.-H. Zuo, and X.-T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010).
[Crossref] [PubMed]

L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
[Crossref] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, H. Yu, and H. Zhang, “Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide,” Opt. Express 21(19), 22263–22268 (2013).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

L. Kunpeng, Y. Li, S. Yanlong, H. Chao, Z. Feng, C. Hongwei, H. Ke, and Y. Aiping, “Dual-wavelength operation in all-solid-state Cr:LiSAF lasers with grating-controlled coupled-cavities,” Opt. Laser Technol. 74, 1–5 (2015).
[Crossref]

Opt. Lett. (13)

L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
[Crossref] [PubMed]

A. Leitenstorfer, C. Fürst, and A. Laubereau, “Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett. 20(8), 916–918 (1995).
[Crossref] [PubMed]

R. Akbari, H. Zhao, and A. Major, “High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser,” Opt. Lett. 41(7), 1601–1604 (2016).
[Crossref] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
[Crossref] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[Crossref] [PubMed]

S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
[Crossref] [PubMed]

Y.-F. Chen and S. W. Tsai, “Diode-pumped -switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing,” Opt. Lett. 27(6), 397–399 (2002).
[Crossref] [PubMed]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, X. Zhang, and M. Jiang, “Efficient triwavelength laser with a Nd:YGG garnet crystal,” Opt. Lett. 35(11), 1801–1803 (2010).
[Crossref] [PubMed]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770-1110 nm tuning range and frequency doubling to 387-463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
[Crossref] [PubMed]

F. Canbaz, E. Beyatli, L.-J. Chen, A. Sennaroglu, F. X. Kärtner, and U. Demirbas, “Highly efficient and robust operation of Kerr-lens mode-locked Cr:LiSAF lasers using gain-matched output couplers,” Opt. Lett. 39(2), 327–330 (2014).
[Crossref] [PubMed]

Remote Sens. Environ. (1)

R. Gaulton, F. M. Danson, F. A. Ramirez, and O. Gunawan, “The potential of dual-wavelength laser scanning for estimating vegetation moisture content,” Remote Sens. Environ. 132, 32–39 (2013).
[Crossref]

Other (2)

C. G. Treviño-Palacios, C. Wetzel, and O. J. Zapata-Nava, “Design of a Dual Wavelength Birefringent Filter ” in RIAO/OPTILAS2007 (AIP Conference Proceedings 2007), 392–397.

T. Waritanant and A. Major, “Dual-Wavelength CW Operations at 1064.1 & 1073.1 nm and 1064.1 & 1085.3 nm of Nd:YVO4 Laser,” in CLEO, (OSA, 2014), p. JW2A.82.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) An X-type laser cavity that contains the laser crystal and a single birefringent plate tilted at Brewster’s angle. (b) Light beam incident on a uniaxial birefringent plate at Brewster’s angle. The orientation of the plate’s crystal axis is arbitrary. c : orientation of the crystal, s : direction of beam propagation, β: internal Brewster’s angle, ρ: rotation angle of the plate, σ: angle between the optical axis and the surface normal.

Fig. 2
Fig. 2

Calculated transmission characteristics of a Cr:Nd:GSGG laser cavity around 1 μm, as a function of wavelength for different values of birefringent plates rotation angle (for ρ in the range from 15° to 115°, see differently colored graphs). The calculation has been performed for a 3-mm-thick crystal quartz birefringent plate with an optical axis tilted 45° with respect to the plate’s surface (σ = 45°). The graph is separated into two for easier viewing.

Fig. 3
Fig. 3

Calculated transmission characteristics of a Cr:Nd:GSGG laser cavity around 1 μm, as a function of wavelength for different values of birefringent plates rotation angle (for ρ in the range from 15° to 35°, as indicated by the blue (ρ = 35°), green (30°), red (23°) and yellow (15°) colors). The calculation has been performed for a 3 mm thick crystal quartz birefringent plate with an optical axis that lies on the surface of the plate (σ = 90°).

Fig. 4
Fig. 4

Calculated variation of free spectral range (FSR), FWHM and modulation depth for a Cr:Nd:GSGG laser cavity operating around a wavelength of 1 μm, as a function of rotation angle ρ of the birefringent plate. The calculation has been performed for an optical axis orientation 45°. The crystal quartz birefringent plate was assumed to have a thickness of 3 mm.

Fig. 5
Fig. 5

Calculated variation of transmission at a wavelength of 1061 nm as a function of birefringent plate rotation angle ρ for a Cr:Nd:GSGG laser cavity that contains a 3-mm-thick crystal quartz birefringent plate. The plate’s optical axis is tilted at an angle σ of (a) 45° and (b) 90° with respect to the plate’s surface.

Fig. 6
Fig. 6

Calculated variation of free spectral range (left) and modulation depth (right) for a Cr:Nd:GSGG laser cavity around 1 μm, as a function of birefringent plate rotation angle. The calculation has been performed for different optical axis orientation values σ ranging between 0° and 90° (see differently colored graphs). The crystal quartz birefringent plate was assumed to have a thickness of 3 mm.

Fig. 7
Fig. 7

Schematics of diode-pumped Cr:Nd:GSGG and Cr:LiSAF lasers. MMD: Multimode diode, PBS: Polarizing beam splitter cube, HWP: Half-wave plate, BRF: Birefringent tuning filter, OC: Output coupler.

Fig. 8
Fig. 8

(a) Continuous-wave laser slope efficiencies taken with Cr:Nd:GSGG gain material using different output couplers and (b) Sample optical spectra obtained in single-wavelength operation. Output powers are also indicated for each case. The data was taken at an absorbed pump power of 4630 mW.

Fig. 9
Fig. 9

Optical spectra obtained in (a) dual-wavelength, and (b) tri-wavelength operation of the continuous-wave Cr:Nd:GSGG laser. Average output powers are indicated for each case with the same coloring as compared to each individual spectrum, respectively. The data was taken at an absorbed pump power of 4630 mW.

Fig. 10
Fig. 10

Optical spectra obtained in dual-wavelength operation of the continuous-wave Cr:LiSAF laser. Obtained output powers are also indicated for each case. The data were taken at an absorbed pump power of 1500 mW.

Tables (1)

Tables Icon

Table 1 Review of dual and tri-wavelength Nd-based solid state lasers

Metrics