Abstract

Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast (>90%) over a 60 nm bandwidth, centered at ∼ 823 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital waveguide adiabatic passage part 1: theory

Jesse A. Vaitkus, M. J. Steel, and Andrew D. Greentree
Opt. Express 25(5) 5466-5479 (2017)

Experimental demonstration of bidirectional light transfer in adiabatic waveguide structures

Tong Liu, Alexander S. Solntsev, Andreas Boes, Thach Nguyen, Christian Will, Arnan Mitchell, Dragomir N. Neshev, and Andrey A. Sukhorukov
Opt. Lett. 41(22) 5278-5281 (2016)

Implementation of PT symmetric devices using plasmonics: principle and applications

Henri Benisty, Aloyse Degiron, Anatole Lupu, André De Lustrac, Sébastien Chénais, Sébastien Forget, Mondher Besbes, Grégory Barbillon, Aurélien Bruyant, Sylvain Blaize, and Gilles Lérondel
Opt. Express 19(19) 18004-18019 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
    [Crossref]
  2. A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
    [Crossref]
  3. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
    [Crossref]
  4. R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
    [Crossref]
  5. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).
  6. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
    [Crossref]
  7. Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
    [Crossref] [PubMed]
  8. R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
    [Crossref]
  9. G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” JOSA B 29, 2901 (2012).
    [Crossref]
  10. F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
    [Crossref]
  11. K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express 20, 23108 (2012).
    [Crossref] [PubMed]
  12. C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Planar achromatic multiple beam splitter by adiabatic light transfer,” Opt. Lett. 37, 3789 (2012).
    [Crossref] [PubMed]
  13. R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
    [Crossref]
  14. A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
    [Crossref]
  15. E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
    [Crossref] [PubMed]
  16. E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
    [Crossref]
  17. A. A. Rangelov and N. V. Vitanov, “Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses,” Phys. Rev. A 85, 043407 (2012).
    [Crossref]
  18. J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A 87, 063820 (2013).
    [Crossref]
  19. J. A. Vaitkus, M. J. Steel, and A. D. Greentree, “Digital Waveguide Adiabatic Passage Part 1: Theory,” Opt. Express253 (2017).
  20. G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
    [Crossref]
  21. Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
    [Crossref] [PubMed]
  22. T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
    [Crossref]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
    [Crossref] [PubMed]
  24. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [Crossref]
  25. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [Crossref] [PubMed]
  26. C. T. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express 19, 19542 (2011).
    [Crossref] [PubMed]

2016 (1)

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

2015 (2)

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

2013 (2)

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A 87, 063820 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

2012 (5)

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” JOSA B 29, 2901 (2012).
[Crossref]

A. A. Rangelov and N. V. Vitanov, “Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses,” Phys. Rev. A 85, 043407 (2012).
[Crossref]

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Planar achromatic multiple beam splitter by adiabatic light transfer,” Opt. Lett. 37, 3789 (2012).
[Crossref] [PubMed]

K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express 20, 23108 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (4)

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
[Crossref]

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

2008 (2)

2007 (2)

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

2006 (1)

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[Crossref]

2004 (2)

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

2001 (1)

1996 (1)

Ahufinger, V.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

Arie, A.

G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” JOSA B 29, 2901 (2012).
[Crossref]

Benseny, A.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

Bergmann, K.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).

Birkl, G.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Brodeur, A.

Busch, T.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

Cadarso, V. J.

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

Chaboyer, Z.

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

Chen, W.-J.

Christodoulides, D. N.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Chung, K.

Ciret, C.

Coda, V.

Cole, J. H.

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

Corbalán, R.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Davis, K. M.

Della Valle, G.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

Dreisow, F.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Eaton, S. M.

Eckert, K.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Ertmer, W.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Fuerbach, A.

García, J. F.

Greentree, A. D.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A 87, 063820 (2013).
[Crossref]

K. Chung, T. J. Karle, M. Rab, A. D. Greentree, and S. Tomljenovic-Hanic, “Broadband and robust optical waveguide devices using coherent tunnelling adiabatic passage,” Opt. Express 20, 23108 (2012).
[Crossref] [PubMed]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

J. A. Vaitkus, M. J. Steel, and A. D. Greentree, “Digital Waveguide Adiabatic Passage Part 1: Theory,” Opt. Express253 (2017).

Grigoryan, G. G.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Guérin, S.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Halfmann, T.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Hamilton, A. R.

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

Heinrich, M.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Helt, L. G.

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

Herman, P. R.

Hirao, K.

Ho, S.

Hollenberg, L. C. L.

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

Hope, A. P.

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

Karle, T. J.

Keil, R.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Koch, T. L.

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

Lahini, Y.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Laporta, P.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

Leroy, C.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Lewenstein, M.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Li, J.

Llobera, A.

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

Longhi, S.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

Mazur, E.

Meany, T.

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

Menchon-Enrich, R.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

Menzel-Jones, C.

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

Miese, C. T.

Milner, V.

E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

Mitchell, A.

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

Miura, K.

Mompart, J.

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

Montemezzani, G.

Morandotti, R.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Neshev, D. N.

Ng, M. L.

Nguyen, T. G.

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

Nikoghosyan, G. V.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Nolte, S.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Ornigotti, M.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

Pashayan-Leroy, Y. T.

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[Crossref]

Porat, G.

G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” JOSA B 29, 2901 (2012).
[Crossref]

Pozzi, F.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Rab, M.

Rangelov, A. A.

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Planar achromatic multiple beam splitter by adiabatic light transfer,” Opt. Lett. 37, 3789 (2012).
[Crossref] [PubMed]

A. A. Rangelov and N. V. Vitanov, “Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses,” Phys. Rev. A 85, 043407 (2012).
[Crossref]

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).

Schaffer, C. B.

Shapiro, E. A.

E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

Shapiro, M.

E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
[Crossref]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

Shore, B. W.

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).

Silberberg, Y.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Sorel, M.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

Steel, M. J.

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

J. A. Vaitkus, M. J. Steel, and A. D. Greentree, “Digital Waveguide Adiabatic Passage Part 1: Theory,” Opt. Express253 (2017).

Sugimoto, N.

Szameit, A.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Tomljenovic-Hanic, S.

Tummidi, R. S.

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

Tünnermann, A.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

Vaitkus, J. A.

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A 87, 063820 (2013).
[Crossref]

J. A. Vaitkus, M. J. Steel, and A. D. Greentree, “Digital Waveguide Adiabatic Passage Part 1: Theory,” Opt. Express253 (2017).

Vila-Planas, J.

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

Vitanov, N. V.

A. A. Rangelov and N. V. Vitanov, “Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses,” Phys. Rev. A 85, 043407 (2012).
[Crossref]

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).

Withford, M. J.

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

C. T. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express 19, 19542 (2011).
[Crossref] [PubMed]

Zhang, H.

Appl. Phys. Lett. (1)

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated Raman adiabatic passage,” Appl. Phys. Lett. 95, 53–56 (2009).
[Crossref]

IEEE Photon. Tech. Lett. (2)

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic Passage of Light in CMOS-Compatible Silicon Oxide Integrated Rib Waveguides,” IEEE Photon. Tech. Lett. 24, 536–538 (2012).
[Crossref]

T. G. Nguyen, R. S. Tummidi, T. L. Koch, and A. Mitchell, “Rigorous modeling of lateral leakage loss in SOI thin-ridge waveguides and couplers,” IEEE Photon. Tech. Lett. 21, 486–488 (2009).
[Crossref]

J. Phys. B (1)

A. P. Hope, T. G. Nguyen, A. Mitchell, and A. D. Greentree, “Adiabatic two-photon quantum gate operations using a long-range photonic bus,” J. Phys. B 48, 055503 (2015).
[Crossref]

JOSA B (1)

G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” JOSA B 29, 2901 (2012).
[Crossref]

Light Sci. Appl. (1)

R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Light spectral filtering based on spatial adiabatic passage,” Light Sci. Appl. 2, e90 (2013).
[Crossref]

Opt. Commun. (1)

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (5)

G. G. Grigoryan, G. V. Nikoghosyan, T. Halfmann, Y. T. Pashayan-Leroy, C. Leroy, and S. Guérin, “Theory of the bright-state stimulated Raman adiabatic passage,” Phys. Rev. A 80, 1–9 (2009).
[Crossref]

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).
[Crossref]

E. A. Shapiro, V. Milner, and M. Shapiro, “Complete transfer of populations from a single state to a preselected superposition of states using piecewise adiabatic passage: Theory,” Phys. Rev. A 79, 023422 (2009).
[Crossref]

A. A. Rangelov and N. V. Vitanov, “Complete population transfer in a three-state quantum system by a train of pairs of coincident pulses,” Phys. Rev. A 85, 043407 (2012).
[Crossref]

J. A. Vaitkus and A. D. Greentree, “Digital three-state adiabatic passage,” Phys. Rev. A 87, 063820 (2013).
[Crossref]

Phys. Rev. B (2)

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B 70, 235317 (2004).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76, 20110(R) (2007).
[Crossref]

Phys. Rev. Lett. (2)

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of Nonlinearity on Adiabatic Evolution of Light,” Phys. Rev. Lett. 101, 193901 (2008).
[Crossref] [PubMed]

E. A. Shapiro, V. Milner, C. Menzel-Jones, and M. Shapiro, “Piecewise adiabatic passage with a series of femtosecond pulses,” Phys. Rev. Lett. 99, 033002 (2007).
[Crossref] [PubMed]

Reports on Progress in Physics (1)

R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, T. Busch, and J. Mompart, “Spatial adiabatic passage: a review of recent progress,” Reports on Progress in Physics 79, 74401 (2016).
[Crossref]

Sci. Rep. (1)

Z. Chaboyer, T. Meany, L. G. Helt, M. J. Withford, and M. J. Steel, “Tunable quantum interference in a 3D integrated circuit,” Sci. Rep. 5, 9601 (2015).
[Crossref] [PubMed]

Other (2)

N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, “Stimulated Raman adiabatic passage in physics, chemistry and beyond,” Rev. Mod. Phys. (posted 3 May 2016, in press) (2016).

J. A. Vaitkus, M. J. Steel, and A. D. Greentree, “Digital Waveguide Adiabatic Passage Part 1: Theory,” Opt. Express253 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Beamprop simulation of transport in structures designed in table 1 in the (a) counter intuitive and (b) intuitive directions. Images are taken at the y = 0 slice. In the counter-intuitive scheme, the small populations in the intermediate guides make the design tolerant to scattering losses from improper segment length, conversely the very high population in the intuitive direction makes these highly sensitive devices. Spaces of 2.5mm where added between waveguidelets to highlight digitisation.

Fig. 2
Fig. 2

(Left) Schematic of device with parameters determined by Table 1. (Right) Stitched differential interference contrast (DIC) microscope image of the start and end of a waveguidelet making up the dark state. A taper and a void are evident at either end.

Fig. 3
Fig. 3

Characterisation at 808 nm. The contrast ratio is plotted as Pc/(Pa + Pc) for the counter-intuitive configuration (a). The total transmission is also plotted as (Pa + Pc)/Pref, for the counter-intuitive configuration (b) and the intuitive configuration (c). Insets show a CCD image of the voids at the end of the waveguidelets. The voids are shown to be bright and strongly scattering in the intuitive configuration, but dark in the counter-intuitive configuration where they remain largely unpopulated. Transmission is higher in the backwards direction in almost all cases. Mean (solid line) and standard deviation (dashed) have been indicated.

Fig. 4
Fig. 4

Spectral response of the devices are plotted, measured in the forwards direction. (a) Counter-intuitive contrast ratio plotted as Pc/(Pa + Pc), and (b) the intuitive transmission plotted as (Pa + Pc)/Pref. Note that the optimal operating wavelength is shifted from 800 nm (dashed) to be about 830 nm (shaded). It can be seen that the broad wavelength response in the counter-intuitive configuration coincides with a suppressed response in the intuitive configuration.

Fig. 5
Fig. 5

Second set of measurements taken of waveguide written at 30.5nJ, using bandpass filtering. (a) Contrast ratio Pa/(Pa + Pc) as a function of wavelength. Shaded area corresponds to 95% confidence interval using bisquare method. The fitted equation is cos2(2π(λλopt)/λλ) where λopt = 823.00 ± 0.17 nm and λλ = 541.15 ± 1.39 nm. (b) Device transmission (Pa + Pc)/Pref as a function of wavelength. A section of the transmission around 805 nm has been omitted due to a normalisation error. In the optimum region, transmission typically lies between 75% to 95% (shaded in-image)

Tables (1)

Tables Icon

Table 1 Device parameters used in all calculations herein. All waveguidelets are aligned at y = 0 and |a〉, |b1, |c〉 all begin at z = 0. The waveguide’s center is given by x. All waveguidelet pairs |bi+1 and |bi are separated in z by 7.5 mm to increase the total length to 70 mm to further demonstrate digitisation. ρ is the 1/e length of the Gaussian profile waveguides and δ is the difference between core and cladding indices. For details about the model parameters see [19].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H = [ 0 Ω a b 0 Ω a b 0 Ω b c 0 Ω b c 0 ] , | E 0 = Ω b c | a Ω a b | c Ω a b 2 + Ω b c 2 .
L opt = π ( Ω a b 2 + Ω b c 2 ) 1 / 2 .

Metrics