Abstract

In this article, we provide a detailed guide to the construction of a convertible optical trapping system for either single-beam or counter-propagating trap. The single-beam trap maintains all the functionalities that a conventional optical tweezer has. While the counter-propagating trap allows for the trapping of particles that single-beam trap cannot handle. The counter-propagating trap can be easily switched to a single-beam trap, and vice versa. Therefore, this convertible optical trapping system allows for the trapping and manipulation of particles with a wide variety of sizes and materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Step-by-step guide to the realization of advanced optical tweezers

Giuseppe Pesce, Giorgio Volpe, Onofrio M. Maragó, Philip H. Jones, Sylvain Gigan, Antonio Sasso, and Giovanni Volpe
J. Opt. Soc. Am. B 32(5) B84-B98 (2015)

High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers

Astrid van der Horst, Peter D. J. van Oostrum, Alexander Moroz, Alfons van Blaaderen, and Marileen Dogterom
Appl. Opt. 47(17) 3196-3202 (2008)

Optical mirror trap with a large field of view

Maximilian Pitzek, Ruth Steiger, Gregor Thalhammer, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 17(22) 19414-19423 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
    [Crossref] [PubMed]
  4. K. Scot C, “Opticla tweezer: a practical guide,” JMSA 1, 64–74 (1995).
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  6. E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
    [Crossref] [PubMed]
  7. P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).
  8. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
    [Crossref]
  9. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
    [Crossref] [PubMed]
  10. G. Pesce, G. Volpe, O. M. Maragó, P. H. Jones, S. Gigan, A. Sasso, and G. Volpe, “Step-by-step guide to the realization of advanced optical tweezers,” J. Opt. Soc. Am. B 32(5), B84–B98 (2015).
    [Crossref]
  11. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  12. A. Gennerich, Optical Tweezers: Methods and Protocols (Springer, 2017).
  13. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (Word Scientific, 2006).
  14. S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
    [Crossref]
  15. A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47(17), 3196–3202 (2008).
    [Crossref] [PubMed]
  16. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
    [Crossref]
  17. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
    [Crossref]
  18. A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
    [Crossref] [PubMed]
  19. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  20. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [Crossref] [PubMed]
  21. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
    [Crossref] [PubMed]
  22. M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 21875 (2008).
    [Crossref]
  23. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [Crossref] [PubMed]
  24. K. Pearce, F. Wang, and P. J. Reece, “Dark-field optical tweezers for nanometrology of metallic nanoparticles,” Opt. Express 19(25), 25559–25569 (2011).
    [Crossref] [PubMed]
  25. A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
    [Crossref] [PubMed]
  26. A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007).
    [Crossref] [PubMed]
  27. D. L. J. Vossen, A. Van Der Horst, M. Dogterom, and A. Van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75(9), 2960–2970 (2004).
    [Crossref]
  28. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
    [Crossref]
  29. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express 18(17), 18217–18222 (2010).
    [Crossref] [PubMed]
  30. P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
    [Crossref] [PubMed]
  31. T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
  32. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
    [Crossref]
  33. C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
    [Crossref]
  34. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  35. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  37. R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  38. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  39. I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
    [Crossref]
  40. A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
    [Crossref] [PubMed]
  41. A. Rohrbach, H. Kress, and E. H. K. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003).
    [Crossref] [PubMed]
  42. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23(1), 7–9 (1998).
    [Crossref] [PubMed]
  43. A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
    [Crossref]
  44. J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43(10), 1991–1995 (2004).
    [Crossref] [PubMed]
  45. C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J. 90(2), 657–667 (2006).
    [Crossref] [PubMed]
  46. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32(14), 1998–2000 (2007).
    [Crossref] [PubMed]
  47. D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
    [Crossref]
  48. P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
    [Crossref]
  49. O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
    [Crossref] [PubMed]
  50. O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
    [Crossref] [PubMed]
  51. A. Samadi and N. S. Reihani, “Optimal beam diameter for optical tweezers,” Opt. Lett. 35(10), 1494–1496 (2010).
    [Crossref] [PubMed]
  52. M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express 19(12), 11759–11768 (2011).
    [Crossref] [PubMed]

2016 (1)

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

2015 (4)

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

G. Pesce, G. Volpe, O. M. Maragó, P. H. Jones, S. Gigan, A. Sasso, and G. Volpe, “Step-by-step guide to the realization of advanced optical tweezers,” J. Opt. Soc. Am. B 32(5), B84–B98 (2015).
[Crossref]

2014 (1)

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

2013 (2)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
[Crossref] [PubMed]

2012 (2)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

2011 (4)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express 19(12), 11759–11768 (2011).
[Crossref] [PubMed]

K. Pearce, F. Wang, and P. J. Reece, “Dark-field optical tweezers for nanometrology of metallic nanoparticles,” Opt. Express 19(25), 25559–25569 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (1)

2008 (5)

A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47(17), 3196–3202 (2008).
[Crossref] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 21875 (2008).
[Crossref]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

2007 (5)

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32(14), 1998–2000 (2007).
[Crossref] [PubMed]

A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007).
[Crossref] [PubMed]

2006 (4)

Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
[Crossref] [PubMed]

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J. 90(2), 657–667 (2006).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

2004 (4)

D. L. J. Vossen, A. Van Der Horst, M. Dogterom, and A. Van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75(9), 2960–2970 (2004).
[Crossref]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43(10), 1991–1995 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

1999 (2)

P. Zemánek, A. Jonás, L. Srámek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24(21), 1448–1450 (1999).
[Crossref] [PubMed]

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

1998 (2)

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23(1), 7–9 (1998).
[Crossref] [PubMed]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

1995 (1)

K. Scot C, “Opticla tweezer: a practical guide,” JMSA 1, 64–74 (1995).

1994 (1)

1986 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Alkilany, A. M.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Appleyard, D. C.

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Ashkin, A.

Balijepalli, A.

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

Bañas, A.

Bendix, P. M.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Berg-Sørensen, K.

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43(10), 1991–1995 (2004).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Borghese, F.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Boulos, S. P.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Branczyk, A. M

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Brzobohatý, O.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

Campbell, A. I.

Campos, C. P.

Carpenter, A. E.

Chernak, D. J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S.

Chvátal, L.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

Cizmar, T.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Coronado, E. A.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

de Grooth, B. G.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

Demirörs, A. F.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Denti, P.

Deufel, C.

C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J. 90(2), 657–667 (2006).
[Crossref] [PubMed]

Dholakia, K.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 21875 (2008).
[Crossref]

Dogterom, M.

Dreyer, J. K.

Dziedzic, J. M.

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Encina, E. R.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Figdor, C. G.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Flyvbjerg, H.

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

Garces-Chavez, V.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Gigan, S.

Gittes, F.

Glückstad, J.

Gorman, J. J.

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

Greve, J.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Gupta, S. K.

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Heckenberg, N. R

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

Hörber, J. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

Huang, J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Iatì, M. A.

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jannasch, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Jauffred, L.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

Johansson, P.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jonás, A.

Jones, P. H.

G. Pesce, G. Volpe, O. M. Maragó, P. H. Jones, S. Gigan, A. Sasso, and G. Volpe, “Step-by-step guide to the realization of advanced optical tweezers,” J. Opt. Soc. Am. B 32(5), B84–B98 (2015).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Käll, M.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Karásek, V.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

Knöner, G

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Kress, H.

Kyrsting, A.

A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
[Crossref] [PubMed]

Lang, M. J.

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

LeBrun, T. W.

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

Lee, H.

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

Lee, W. M.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

Lehmuskero, A.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Liska, M.

Loke, V. L. Y

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

Mahamdeh, M.

Maragó, O. M.

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

Marchington, R. F.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

Metzger, N. K.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

Mika, F.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Moroz, A.

Murphy, C. J.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nieminen, T. A

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

Norregaard, K.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43(10), 1991–1995 (2004).
[Crossref] [PubMed]

Oddershede, L. B.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32(14), 1998–2000 (2007).
[Crossref] [PubMed]

Palima, D.

Paták, A.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Pearce, K.

Perkins, T. T.

Pesce, G.

Peters, I. M.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

Pokorná, Z.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Reece, P. J.

K. Pearce, F. Wang, and P. J. Reece, “Dark-field optical tweezers for nanometrology of metallic nanoparticles,” Opt. Express 19(25), 25559–25569 (2011).
[Crossref] [PubMed]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

Reihani, N. S.

Reihani, S. N. S.

Rohrbach, A.

A. Rohrbach, H. Kress, and E. H. K. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003).
[Crossref] [PubMed]

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

Rubinsztein-Dunlop, H

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Rubinsztein-Dunlop, H.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

Saija, R.

Samadi, A.

Sasso, A.

Schäffer, E.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

M. Mahamdeh, C. P. Campos, and E. Schäffer, “Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers,” Opt. Express 19(12), 11759–11768 (2011).
[Crossref] [PubMed]

Schins, J. M.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

Schmidt, C. F.

Seol, Y.

Šiler, M.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

Sisco, P. N.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Sivapalan, S. T.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Spesyvtseva, S. E. S.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Srámek, L.

Stefani, F. D.

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Stelzer, E. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Stelzer, E. H. K.

A. Rohrbach, H. Kress, and E. H. K. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003).
[Crossref] [PubMed]

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

Stilgoe, A. B

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

Svoboda, K.

Tauro, S.

Thompson, L. B.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Tolic-Nørrelykke, I. M.

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

Tong, L.

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

Trojek, J.

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, and P. Zemánek, “Non-spherical gold nanoparticles trapped in optical tweezers: shape matters,” Opt. Express 23(7), 8179–8189 (2015).
[Crossref] [PubMed]

van Blaaderen, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47(17), 3196–3202 (2008).
[Crossref] [PubMed]

A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007).
[Crossref] [PubMed]

D. L. J. Vossen, A. Van Der Horst, M. Dogterom, and A. Van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75(9), 2960–2970 (2004).
[Crossref]

van der Horst, A.

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47(17), 3196–3202 (2008).
[Crossref] [PubMed]

van Vugt, L. K.

Vandermeulen, K. Y.

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

Vanmaekelbergh, D. A.

Volpe, G.

Vossen, D. L. J.

D. L. J. Vossen, A. Van Der Horst, M. Dogterom, and A. Van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75(9), 2960–2970 (2004).
[Crossref]

Wang, F.

Wang, M. D.

C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J. 90(2), 657–667 (2006).
[Crossref] [PubMed]

Yang, J. A.

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

Zemanek, P.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Zemánek, P.

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

ACS Nano (1)

A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser trapping of colloidal metal nanoparticles,” ACS Nano 9(4), 3453–3469 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Am. J. Phys. (1)

D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007).
[Crossref]

Appl. Opt. (2)

Biophys. J. (1)

C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J. 90(2), 657–667 (2006).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

P. M. Hansen, I. M. Tolic-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 175(8), 572–573 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum Dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 1–12 (2014).

J. Appl. Phys. (2)

Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103(9), 93119 (2008).
[Crossref]

A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002).
[Crossref]

J. Mod. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5–6), 528–544 (2011).
[Crossref]

J. Nanophotonics (1)

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 21875 (2008).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

T. A Nieminen, V. L. Y Loke, A. B Stilgoe, G Knöner, A. M Brańczyk, N. R Heckenberg, and H Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang, “The many faces of gold nanorods,” J. Phys. Chem. Lett. 1(19), 2867–2875 (2010).
[Crossref]

JMSA (1)

K. Scot C, “Opticla tweezer: a practical guide,” JMSA 1, 64–74 (1995).

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44(5), 378–386 (1999).
[Crossref] [PubMed]

Nano Lett. (4)

A. Balijepalli, J. J. Gorman, S. K. Gupta, and T. W. LeBrun, “Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control,” Nano Lett. 12(5), 2347–2351 (2012).
[Crossref] [PubMed]

A. Kyrsting, P. M. Bendix, and L. B. Oddershede, “Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles,” Nano Lett. 13(1), 31–35 (2013).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Nanoscale (1)

E. A. Coronado, E. R. Encina, and F. D. Stefani, “Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3(10), 4042–4059 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Nat. Protoc. (1)

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5–6), 529–541 (1996).
[Crossref]

Opt. Express (7)

Opt. Lett. (8)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. SPIE (1)

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Rev. Sci. Instrum. (3)

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, “Three dimensional single-particle tracking with nanometer resolution,” Rev. Sci. Instrum. 69(7), 2762–2766 (1998).
[Crossref]

D. L. J. Vossen, A. Van Der Horst, M. Dogterom, and A. Van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75(9), 2960–2970 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

O. Brzobohatý, M. Šiler, J. Trojek, L. Chvátal, V. Karásek, A. Paták, Z. Pokorná, F. Mika, and P. Zemánek, “Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers,” Sci. Rep. 5, 8106 (2015).
[Crossref] [PubMed]

Other (2)

A. Gennerich, Optical Tweezers: Methods and Protocols (Springer, 2017).

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (Word Scientific, 2006).

Supplementary Material (3)

NameDescription
» Visualization 1: AVI (420 KB)      Trap position move in a CP trap
» Visualization 2: AVI (208 KB)      A trapped gold nanoparticle imaged on CCD1
» Visualization 3: AVI (204 KB)      A trapped gold nanoparticle imaged on CCD2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Compare single-beam and counter-propagating trap.

Fig. 2
Fig. 2

(a) Calculated optical force along laser propagating direction (z direction) for a 100 nm GNP in single-beam (black solid line) and counter-propagating trap (red solid line). Fzmax is the maximum negative restoring force along z direction as marked by the black arrow. (b) The same calculated optical force for a 200 nm GNP in single-beam and counter-propagating trap. (c) Trapping diagram for GNPs with diameters ranging from 10 to 250 nm. SB and CP trap stands for single-beam and counter-propagating trap, respectively.

Fig. 3
Fig. 3

Calculated optical force along laser propagating direction (z direction) for a 200 nm GNP in CP trap. The NA of the lower objective lens O1 is NA = 1.2, the NA of the upper objective lens O2 changes from NA = 1.2 to NA = 0.4. P2/P1 is the power ratio between the upper and the lower beam.

Fig. 4
Fig. 4

Layout of the optical trapping system. OI: optical isolator; L: lens; HWP: half wave-plate; M: mirror; BS: beam splitter; PBS: polarizing beam splitter; DM: dichroic mirror; O: objective lens; FL: field lens; PL: polarizer; QPD: quadrant photodiode; PM: power meter; CCD: charge coupled device. Inset shows part of the system.

Fig. 5
Fig. 5

(a). Isolate the laser vibration with an optical fiber. (b) Choose a laser with minimum vibration in the laser head.

Fig. 6
Fig. 6

(a) Align objective O1 to the optical axis with the reflected light from the back aperture of O1. (b) The image on CCD2 shows the objective lens is misaligned. (c) The image on CCD2 shows the objective lens is well aligned to the optical axis.

Fig. 7
Fig. 7

Procedures to overlap the objective plane of O1 to the trapping plane.

Fig. 8
Fig. 8

Procedures to overlap the foci of the two CP beams focused by O1 and O2.

Fig. 9
Fig. 9

Procedures to calibrate the laser power at the trapping position. (a) Laser power check points. (b) Measure the laser transmission of the objective lens. (c) The calibrated curve for the laser power at the trapping position.

Fig. 10
Fig. 10

Procedures to prepare a well-sealed sample chamber.

Fig. 11
Fig. 11

(a) Change the trapping position of a polymer bead along the optical axis by moving the objective lens O2. (b) – (d) sequential images of the polymer bead when moving O2 downward (see Visualization 1).

Fig. 12
Fig. 12

(a) Power spectra of a 200 nm GNP in a CP trap (dot points). Full line shows the fit using the method described in [48]. Dashed lines show the standard deviation of the blocked data points according to which are Gaussian distributed around their expectation value (full line). (b) Position distribution of the 200 nm GNP along the transverse direction (x direction) in the CP trap. (c) and (d) shows the image of the GNP trapped in the CP trap on CCD1 and CCD2 (Fig. 4), respectively. (see Visualization 2 and Visualization 3).

Metrics