Abstract

We present an experimental study on oscillation of absorbing particles at the water-air interface. The oscillation is induced by laser tweezers, which are generated with a high numerical aperture objective. When the laser beam is tightly focused at the water-air interface, the optical gradient force attracts the particles to the spot center, and the laser heating of particles results in a strong thermal gradient that drives the particles to leave the spot center. Under the action of thermal and optical gradient force together, the absorbing particles oscillate at the water-air interface.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
    [Crossref] [PubMed]
  3. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22(11), 816–818 (1997).
    [Crossref] [PubMed]
  4. L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
    [Crossref] [PubMed]
  5. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
    [Crossref] [PubMed]
  6. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
    [Crossref] [PubMed]
  7. M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
    [Crossref] [PubMed]
  8. P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
    [Crossref] [PubMed]
  9. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
    [Crossref] [PubMed]
  10. S. Duhr and D. Braun, “Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
    [Crossref] [PubMed]
  11. Y. Liu and A. W. Poon, “Flow-assisted Single-beam Optothermal Manipulation of Microparticles,” Opt. Express 18(17), 18483–18491 (2010).
    [Crossref] [PubMed]
  12. R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19(11), 10571–10586 (2011).
    [Crossref] [PubMed]
  13. A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
    [Crossref] [PubMed]
  14. J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
    [Crossref] [PubMed]
  15. P. Kumari, J. A. Dharmadhikari, A. K. Dharmadhikari, H. Basu, S. Sharma, and D. Mathur, “Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing,” Opt. Express 20(4), 4645–4652 (2012).
    [Crossref] [PubMed]
  16. R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
    [Crossref] [PubMed]
  17. B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
    [Crossref] [PubMed]
  18. D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
    [Crossref] [PubMed]
  19. A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
    [Crossref] [PubMed]
  20. M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
    [Crossref]
  21. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
    [Crossref]
  22. H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24(5), 665–697 (1999).
    [Crossref]
  23. T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
    [Crossref] [PubMed]
  24. S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a Material World,” ACS Photonics 3(5), 719–736 (2016).
    [Crossref]
  25. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
    [Crossref] [PubMed]
  26. R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condes. Matter 20(15), 153102 (2008).
    [Crossref]
  27. R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
    [Crossref] [PubMed]
  28. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press LLC, Boca Raton, FL, 2001).
  29. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
    [Crossref]
  30. A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
    [Crossref]

2016 (6)

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a Material World,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

2015 (1)

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

2014 (1)

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

2013 (2)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, “Laser-induced thermophoresis of individual particles in a viscous liquid,” Opt. Express 19(11), 10571–10586 (2011).
[Crossref] [PubMed]

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
[Crossref] [PubMed]

2008 (2)

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condes. Matter 20(15), 153102 (2008).
[Crossref]

2006 (2)

A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
[Crossref]

S. Duhr and D. Braun, “Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

2005 (1)

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

2002 (3)

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

2000 (1)

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

1999 (1)

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24(5), 665–697 (1999).
[Crossref]

1997 (1)

1991 (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

1989 (1)

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

1986 (1)

Annesley, J.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Arias-Gonzalez, J. R.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Aveyard, R.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Ballerini, R.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Bartkiewicz, S.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

Basu, H.

Bickel, T.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Binks, B. P.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Bjorkholm, J. E.

Botchway, S. W.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Bourdieu, L.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Braun, D.

S. Duhr and D. Braun, “Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

Brenner, M. P.

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Bucholtz, F.

Burgess, A. N.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Bustamante, C.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Capitanio, M.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Chamkha, A. J.

A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
[Crossref]

Chatenay, D.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Chen, J.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Chu, S.

Clint, J. H.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Coleman, J. P.

Cong, H.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Danné, N.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Dholakia, K.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a Material World,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Di Leonardo, R.

R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
[Crossref] [PubMed]

Dradrach, K.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

Duhr, S.

S. Duhr and D. Braun, “Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

Dunlap, D.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Evensen, L.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Fenaroli, F.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Finzi, L.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Fletcher, P. D. I.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Furst, E. M.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Girot, A.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Giuntini, M.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Gong, L.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

Griffiths, G.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Harlepp, S.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Helfer, E.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Ho, H.-P.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Horozov, T. S.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Ianni, F.

R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
[Crossref] [PubMed]

Jauffred, L.

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Johansen, P. L.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Juodkazis, S.

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24(5), 665–697 (1999).
[Crossref]

Kang, Z.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Kaz, D. M.

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Kitamura, N.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

Kobayashi, T.

Kong, S.-K.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

Koster, G.

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Kudo, T.

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

Kumari, P.

Li, D.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

Li, Y.-M.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Libchaber, A.

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

Linke, H.

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Liu, Y.

Loo, F.-C.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Loudet, J. C.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

MacKintosh, F. C.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Mani, M.

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Manoharan, V. N.

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Mao, H.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Masuhara, H.

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

Mathur, D.

McGorty, R.

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Miniewicz, A.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

Misawa, H.

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24(5), 665–697 (1999).
[Crossref]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

Nees, D.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Neumann, B.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Oddershede, L. B.

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Oettel, M.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Olson, C. C.

Omori, R.

Orlikowska, H.

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

Pantina, J. P.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Park, B. J.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Parker, A. W.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Parola, A.

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condes. Matter 20(15), 153102 (2008).
[Crossref]

Paunov, V. N.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Pavone, F. S.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Piazza, R.

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condes. Matter 20(15), 153102 (2008).
[Crossref]

Poon, A. W.

Pop, I.

A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
[Crossref]

Pouligny, B.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Ren, F.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Reynaert, S.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Robert, J.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

Romano, G.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Ruocco, G.

R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
[Crossref] [PubMed]

Sasaki, K.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

Schermer, R. T.

Schmitt, R.

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Sharma, S.

Smith, S. B.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Spesyvtseva, S. E. S.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a Material World,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Suzuki, A.

Taheri, S. M.

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Takhar, H. S.

A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
[Crossref]

Tang, M.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Tinoco, I.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Vermant, J.

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Wang, S. F.

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

Wang, Z.-Q.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

Ward, A. D.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Wei, X.-B.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

Wu, S.-Y.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Würger, A.

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

Yuyama, K.

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

Zhang, H.

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Zhong, M.-C.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

Zhou, J.-H.

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

M.-C. Zhong, L. Gong, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of red blood cells in living animals with a water immersion objective,” Opt. Lett. 38(23), 5134–5137 (2013).
[Crossref] [PubMed]

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a Material World,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Appl. Phys. Lett. (1)

M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Optical trapping of core-shell magnetic microparticles by cylindrical vector beams,” Appl. Phys. Lett. 105(18), 181112 (2014).
[Crossref]

Biophys. J. (1)

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Chem. Lett. (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Spatial pattern formation, size selection, and directional flow of polymer latex particles by laser trapping technique,” Chem. Lett. 20(3), 469–472 (1991).
[Crossref]

J. Phys. Condes. Matter (1)

R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condes. Matter 20(15), 153102 (2008).
[Crossref]

Langmuir (3)

R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal Attraction Induced by a Temperature Gradient,” Langmuir 25(8), 4247–4250 (2009).
[Crossref] [PubMed]

A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J. C. Loudet, and B. Pouligny, “Motion of Optically Heated Spheres at the Water-Air Interface,” Langmuir 32(11), 2687–2697 (2016).
[Crossref] [PubMed]

B. J. Park, J. P. Pantina, E. M. Furst, M. Oettel, S. Reynaert, and J. Vermant, “Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces,” Langmuir 24(5), 1686–1694 (2008).
[Crossref] [PubMed]

Meccanica (1)

A. J. Chamkha, I. Pop, and H. S. Takhar, “Marangoni mixed convection boundary layer flow,” Meccanica 41(2), 219–232 (2006).
[Crossref]

Nano Lett. (2)

T. Kudo, S. F. Wang, K. Yuyama, and H. Masuhara, “Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation,” Nano Lett. 16(5), 3058–3062 (2016).
[Crossref] [PubMed]

L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical Trapping of Gold Nanoparticles in Air,” Nano Lett. 15(7), 4713–4719 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4, 1768 (2013).
[Crossref] [PubMed]

P. L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, and G. Koster, “Optical micromanipulation of nanoparticles and cells inside living zebrafish,” Nat. Commun. 7, 10974 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

D. M. Kaz, R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan, “Physical ageing of the contact line on colloidal particles at liquid interfaces,” Nat. Mater. 11(2), 138–142 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (4)

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microrheology of biopolymer-membrane complexes,” Phys. Rev. Lett. 85(2), 457–460 (2000).
[Crossref] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89(18), 188103 (2002).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Thermophoretic Depletion Follows Boltzmann Distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. N. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett. 88(24), 246102 (2002).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. U.S.A. 86(20), 7914–7918 (1989).
[Crossref] [PubMed]

Prog. Polym. Sci. (1)

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24(5), 665–697 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002).
[Crossref]

Sci. Rep. (2)

A. Miniewicz, S. Bartkiewicz, H. Orlikowska, and K. Dradrach, “Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles,” Sci. Rep. 6, 34787 (2016).
[Crossref] [PubMed]

J. Chen, H. Cong, F.-C. Loo, Z. Kang, M. Tang, H. Zhang, S.-Y. Wu, S.-K. Kong, and H.-P. Ho, “Thermal gradient induced tweezers for the manipulation of particles and cells,” Sci. Rep. 6, 35814 (2016).
[Crossref] [PubMed]

Other (1)

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press LLC, Boca Raton, FL, 2001).

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (80 KB)      Bubble volume increasing. (Bar=5 µm. “+” indicates the trap center.)
» Visualization 2: MOV (474 KB)      Oscillations of absorbing particles at the water-air interface. (Bar=5 µm. “+” indicates the trap center.)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical tweezers setup. Instrument layout showing optical paths for 1064 nm trapping laser and halogen lamp for bright-field imaging. BE, beam expander; L1, lens; M1-M2, mirrors; DM, dichroic mirror; Ltube, tube lens; MO, microscope objective; CMOS, CMOS camera. Inset: side view of the circular trough.

Fig. 2
Fig. 2

(a-c) Images of a trapped PSC particle escaping from the 3D-trap at high power. (d) Laser induced thermal damage to surface of the particle. Scale bar, 5 μm; ' + ' indicates the optical trap center.

Fig. 3
Fig. 3

Bubble volume increasing because of laser absorption of particle at the water-air interface (see Visualization 1). The white arrows mark the bubble. Scale bar, 5 μm; ' + ' indicates the optical trap center.

Fig. 4
Fig. 4

Oscillation of an absorbing particle at the water-air interface. The laser power is 200 mW at the pupil of the objective. (a-e) Video sequences showing movement of the particle (see Visualization 2). The black arrows indicate the direction of particle movement. Scale bar, 5 μm; ' + ' indicates the optical trap center. (f) Motion trajectory of the particle. Rin and Rout are the two oscillation peaks.

Fig. 5
Fig. 5

(a) Schematic view of oscillation of a PSC particle (not same scale). The beam has a Gaussian intensity distribution. (b) Relation of the two distance peaks of oscillation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp( 2 R 2 / ω 0 2 ),
v T = D T T= S T D 0 T,
R out = m/ k op v T ,

Metrics