Abstract

A new method for collecting time-resolved laser-induced incandescence (TiRe-LII) signals with high dynamic range is presented. Gated photomultiplier tubes (PMT) are used to detect temporal sections of the LII signal. This helps to overcome the limitations of PMTs caused by restricted maximum signal current at the strong initial signal and poor signal-to-noise ratios when the signal intensity approaches the noise level. We present a simple method for increasing the accuracy of two-color pyrometry at later decay times and two advanced strategies for getting high accuracy over the complete temperature trace or even achieve single-shot capability with high dynamic range. Validation measurements in a standardized flame show that the method is sensitive enough to even resolve the local increase in gas temperature as a consequence of heating the soot particles with a laser pulse.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements

Thilo Lehre, Beate Jungfleisch, Rainer Suntz, and Henning Bockhorn
Appl. Opt. 42(12) 2021-2030 (2003)

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Yi Chen, Emre Cenker, Daniel R. Richardson, Sean P. Kearney, Benjamin R. Halls, Scott A. Skeen, Christopher R. Shaddix, and Daniel R. Guildenbecher
Opt. Lett. 43(21) 5363-5366 (2018)

Performance of photomultipliers in the context of laser-induced incandescence

Raphael Mansmann, Thomas Dreier, and Christof Schulz
Appl. Opt. 56(28) 7849-7860 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23(13), 2201–2208 (1984).
    [Crossref] [PubMed]
  2. H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
    [Crossref]
  3. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, “Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements,” Appl. Opt. 42(12), 2021–2030 (2003).
    [Crossref] [PubMed]
  4. S. De Iuliis, F. Cignoli, and G. Zizak, “Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames,” Appl. Opt. 44(34), 7414–7423 (2005).
    [Crossref] [PubMed]
  5. S. Will, S. Schraml, and A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20(22), 2342–2344 (1995).
    [Crossref] [PubMed]
  6. K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
    [Crossref]
  7. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
    [Crossref] [PubMed]
  8. D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity,” Appl. Opt. 44(31), 6773–6785 (2005).
    [Crossref] [PubMed]
  9. D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
    [Crossref]
  10. C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
    [Crossref]
  11. T. P. Jenkins and R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126(3), 1669–1679 (2001).
    [Crossref]
  12. F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
    [Crossref]
  13. E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
    [Crossref]
  14. Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
    [Crossref]

2015 (2)

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

2011 (1)

2009 (2)

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

2007 (1)

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

2006 (1)

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

2005 (2)

2003 (1)

2001 (1)

T. P. Jenkins and R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126(3), 1669–1679 (2001).
[Crossref]

1996 (1)

Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
[Crossref]

1995 (1)

1984 (1)

Bachalo, W. D.

Bengtsson, P.-E.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Bladh, H.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Bockhorn, H.

Bougie, B.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Cignoli, F.

Contini, D.

Cubeddu, R.

Dalla Mora, A.

Daun, K. J.

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

De Iuliis, S.

Gülder, Ö. L.

D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity,” Appl. Opt. 44(31), 6773–6785 (2005).
[Crossref] [PubMed]

Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
[Crossref]

Gulinatti, A.

Hanson, R. K.

T. P. Jenkins and R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126(3), 1669–1679 (2001).
[Crossref]

Hofmann, M.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Jenkins, T. P.

T. P. Jenkins and R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126(3), 1669–1679 (2001).
[Crossref]

Johnsson, J.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Jungfleisch, B.

Kock, B. F.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Lehre, T.

Leipertz, A.

Liu, F.

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity,” Appl. Opt. 44(31), 6773–6785 (2005).
[Crossref] [PubMed]

Melton, L. A.

Michelsen, H.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Michelsen, H. A.

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

Nordström, E.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Olofsson, N.-E.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Pifferi, A.

Sawchuk, R. A.

Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
[Crossref]

Schraml, S.

Schulz, C.

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Simonsson, J.

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Smallwood, G.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Smallwood, G. J.

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity,” Appl. Opt. 44(31), 6773–6785 (2005).
[Crossref] [PubMed]

Snelling, D. R.

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, “A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity,” Appl. Opt. 44(31), 6773–6785 (2005).
[Crossref] [PubMed]

Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
[Crossref]

Spinelli, L.

Stagg, B. J.

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

Suntz, R.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, “Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements,” Appl. Opt. 42(12), 2021–2030 (2003).
[Crossref] [PubMed]

Thomson, K. A.

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

Torricelli, A.

Tosi, A.

Will, S.

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

S. Will, S. Schraml, and A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20(22), 2342–2344 (1995).
[Crossref] [PubMed]

Zappa, F.

Zizak, G.

Appl. Opt. (4)

Appl. Phys. B (4)

D. R. Snelling, K. A. Thomson, F. Liu, and G. J. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96(4), 657–669 (2009).
[Crossref]

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

K. J. Daun, B. J. Stagg, F. Liu, G. J. Smallwood, and D. R. Snelling, “Determining aerosol particle size distributions using time-resolved laser-induced incandescence,” Appl. Phys. B 87(2), 363–372 (2007).
[Crossref]

F. Liu, D. R. Snelling, K. A. Thomson, and G. J. Smallwood, “Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII,” Appl. Phys. B 96(4), 623–636 (2009).
[Crossref]

Combust. Flame (1)

T. P. Jenkins and R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126(3), 1669–1679 (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Inst. (2)

E. Nordström, N.-E. Olofsson, J. Simonsson, J. Johnsson, H. Bladh, and P.-E. Bengtsson, “Local gas heating in sooting flames by heat transfer from laser-heated particles investigated using rotational CARS and LII,” Proc. Combust. Inst. 35(3), 3707–3713 (2015).
[Crossref]

Ö. L. Gülder, D. R. Snelling, and R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” Proc. Combust. Inst. 26(2), 2351–2358 (1996).
[Crossref]

Pror. Energy Combust. Sci. (1)

H. A. Michelsen, C. Schulz, G. J. Smallwood, and S. Will, “Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications,” Pror. Energy Combust. Sci. 51, 2–48 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Example for a typical temperature trace of LII in-flame measurements starting from the signal peak. Temperatures (blue) are calculated from the ratio of two LII signals in two different wavelength ranges (orange/green) using a relative channel calibration, double exponential regression (red) and the residual between fit and measured data (black).
Fig. 2
Fig. 2 Principle of the basic sequential detection technique: Raw signals (left) are used to calculate absolute signals (right); (a) typical LII signal, (b–d) Sequential detection technique applied three times.
Fig. 3
Fig. 3 Temperature trace (log scale) calculated from two sequences and corrected for flame radiation (1750 K) as a function of probe volume to total measurement volume ratio x
Fig. 4
Fig. 4 Comparison of single-shot (left) and multi-shot analysis (right) (100 laser shots); Absolute signals (middle graphs) are calculated from raw signals (upper graphs) using spectral calibration and gain settings; Temperature (lower graphs) calculated by two-color pyrometry; the portion covered by the rectangle is enlarged in Fig. 5. The following ND filters were used: (blue: 1%, orange: 10%, red: 79%).
Fig. 5
Fig. 5 Enlarged portion of the temperature trace from Fig. 4: Temperature traces from the conventional analysis of full LII decays (blue) and results of the sequential detection technique (orange and red) show the dramatic improvement in data quality that now allows to determine the effect of local gas heating (red) compared to measurements without laser heating (green). Residual of least square fit of measured data (bottom). After DC flame radiation correction (x = 0.24), local gas heating could be determined as 80 K for these laser settings and flame conditions.

Tables (1)

Tables Icon

Table 1 Schematic comparison of basic (A) and two advanced (B and C) sequential detection techniques: circled numbers denote respective PMT detectors and generated signal (and temperature) traces.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S probe (λ,T)= S total (λ,T) S flame (λ)+ S probe (λ, T gas )
S probe (λ, T gas )=x S flame (λ)
T p = h  c 0 k B ( 1 λ 2 1 λ 1 ) [ ln( I λ ( λ 1 , T p ) I λ ( λ 2 , T p ) E( m λ 2 ) E( m λ 1 ) ( λ 1 λ 2 ) 6 ) ] 1

Metrics