Abstract

We report laser-induced fluorescence spectroscopy (LIF) of laser-produced plasmas under varying nitrogen pressure levels up to atmospheric pressure. The plasmas were generated on a glass target containing minor amounts of U and Al using 1064 nm, 6 ns pulses from a Nd:YAG laser. A frequency-doubled continuous-wave Ti:Sapphire laser was used as an ultra-narrowband tunable LIF excitation source to increase the magnitude and persistence of emission from selected U and Al atomic transitions in a laser-produced plasma. 2D-fluorescence spectroscopy (2D-FS) absorption/emission images were recorded at various nitrogen pressure levels, showing both excitation and emission spectral features. At lower pressure levels (⪝100 Torr), fluorescence emission was found to be well separated in time from thermally-excited emission. However, as the ambient pressure increased, the thermally-excited emission persisted for longer times along with a reduction of LIF emission persistence and intensity. The excitation spectral features showed the inherent linewidths of various transitions in the plasma, which have significantly narrower spectral linewidths than observed in emission spectra. We evaluated two nearby transitions separated by only 18 pm to demonstrate the effectiveness of fluorescence spectra over thermally-excited spectra for high-resolution studies. The present results highlight the importance of LIF as a diagnostic tool employing continuous-wave laser re-excitation, addressing some of the limitations of traditional emission and absorption spectroscopic methods.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Two-dimensional fluorescence spectroscopy of laser-produced plasmas

S. S. Harilal, N. L. LaHaye, and M. C. Phillips
Opt. Lett. 41(15) 3547-3550 (2016)

Standoff analysis of laser-produced plasmas using laser-induced fluorescence

S. S. Harilal, B. E. Brumfield, and M. C. Phillips
Opt. Lett. 43(5) 1055-1058 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
    [Crossref]
  2. H.-J. Kunze, Introductions to Plasma Spectroscopy (Springer, 2009).
  3. B. Doggett and J. G. Lunney, “Langmuir probe characterization of laser ablation plasmas,” J. Appl. Phys. 105(3), 033306 (2009).
    [Crossref]
  4. K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
    [Crossref]
  5. Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
    [Crossref]
  6. N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
    [Crossref] [PubMed]
  7. S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24, 17941–17949 (2016).
    [Crossref] [PubMed]
  8. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  9. N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
    [Crossref]
  10. S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23, 27113 (2015).
    [Crossref] [PubMed]
  11. S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
    [Crossref]
  12. J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
    [Crossref]
  13. E. Tognoni and G. Cristoforetti, “Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment,” J. Anal. At. Spectrom. 29(8), 1318–1338 (2014).
    [Crossref]
  14. H. S. Kwong and R. M. Measures, “Trace-Element Laser Microanalyzer with Freedom from chemical matrix effect,” Anal. Chem. 51(3), 428–432 (1979).
    [Crossref]
  15. R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18(3), 281–286 (1979).
    [Crossref] [PubMed]
  16. K. Niemax and W. Sdorra, “Optical emission spectrometry and laser-induced fluorescence of laser produced sample plumes,” Appl. Opt. 29(33), 5000–5006 (1990).
    [Crossref] [PubMed]
  17. B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
    [Crossref]
  18. I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
    [Crossref]
  19. H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
    [Crossref]
  20. I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
    [Crossref]
  21. B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
    [Crossref]
  22. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
    [Crossref]
  23. C. M. Li, Z. Q. Hao, Z. M. Zou, R. Zhou, J. M. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24, 7850–7857 (2016).
    [Crossref] [PubMed]
  24. H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
    [Crossref]
  25. S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
    [Crossref]
  26. M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
    [Crossref]
  27. M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
    [Crossref]
  28. R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
    [Crossref]
  29. G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
    [Crossref]
  30. S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
    [Crossref] [PubMed]
  31. N. H. Cheung, “Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis,” Appl. Spectrosc. Rev. 42(3), 235–250 (2007).
    [Crossref]
  32. C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
    [Crossref]
  33. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
    [Crossref] [PubMed]
  34. Y. Nakata, T. Okada, and M. Maeda, “Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes,” Opt. Lett. 24(23), 1765–1767 (1999).
    [Crossref] [PubMed]
  35. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
    [Crossref]
  36. Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
    [Crossref]
  37. K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
    [Crossref]
  38. J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
    [Crossref]
  39. L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
    [Crossref] [PubMed]
  40. D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).
    [Crossref]
  41. J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
    [Crossref]
  42. H.-L. Li, H.-L. Xu, B.-S. Yang, Q.-D. Chen, T. Zhang, and H.-B. Sun, “Sensing combustion intermediates by femtosecond filament excitation,” Opt. Lett. 38(8), 1250–1252 (2013).
    [Crossref] [PubMed]
  43. T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
    [Crossref] [PubMed]
  44. K. Ishii and T. Tahara, “Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle,” J. Phys. Chem. B 117(39), 11414–11422 (2013).
    [Crossref] [PubMed]
  45. S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
    [Crossref] [PubMed]
  46. S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
    [Crossref] [PubMed]
  47. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  48. R. L. Kurucz, Atomic spectral line database, http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html , last accessed 09/27/2016.
  49. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
    [Crossref]
  50. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
    [Crossref]
  51. S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
    [Crossref]
  52. E. Tognoni and G. Cristoforetti, “Signal and noise in laser-induced breakdown spectroscopy: an introductory review,” Opt. Laser Technol. 79, 164–172 (2016).
    [Crossref]
  53. C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
    [Crossref]

2016 (7)

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

E. Tognoni and G. Cristoforetti, “Signal and noise in laser-induced breakdown spectroscopy: an introductory review,” Opt. Laser Technol. 79, 164–172 (2016).
[Crossref]

C. M. Li, Z. Q. Hao, Z. M. Zou, R. Zhou, J. M. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence,” Opt. Express 24, 7850–7857 (2016).
[Crossref] [PubMed]

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24, 17941–17949 (2016).
[Crossref] [PubMed]

2015 (5)

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23, 27113 (2015).
[Crossref] [PubMed]

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

2014 (2)

E. Tognoni and G. Cristoforetti, “Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment,” J. Anal. At. Spectrom. 29(8), 1318–1338 (2014).
[Crossref]

N. R. Taylor and M. C. Phillips, “Differential laser absorption spectroscopy of uranium in an atmospheric pressure laser-induced plasma,” Opt. Lett. 39(3), 594–597 (2014).
[Crossref] [PubMed]

2013 (3)

H.-L. Li, H.-L. Xu, B.-S. Yang, Q.-D. Chen, T. Zhang, and H.-B. Sun, “Sensing combustion intermediates by femtosecond filament excitation,” Opt. Lett. 38(8), 1250–1252 (2013).
[Crossref] [PubMed]

K. Ishii and T. Tahara, “Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle,” J. Phys. Chem. B 117(39), 11414–11422 (2013).
[Crossref] [PubMed]

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

2012 (1)

2011 (1)

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

2010 (1)

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

2009 (4)

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).
[Crossref]

B. Doggett and J. G. Lunney, “Langmuir probe characterization of laser ablation plasmas,” J. Appl. Phys. 105(3), 033306 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

2008 (1)

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

2007 (2)

N. H. Cheung, “Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis,” Appl. Spectrosc. Rev. 42(3), 235–250 (2007).
[Crossref]

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

2006 (1)

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

2003 (1)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

2001 (3)

L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
[Crossref] [PubMed]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

2000 (2)

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

1999 (4)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

Y. Nakata, T. Okada, and M. Maeda, “Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes,” Opt. Lett. 24(23), 1765–1767 (1999).
[Crossref] [PubMed]

1998 (4)

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[Crossref] [PubMed]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

1997 (2)

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
[Crossref]

1996 (2)

R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

1992 (1)

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

1990 (1)

1979 (2)

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18(3), 281–286 (1979).
[Crossref] [PubMed]

H. S. Kwong and R. M. Measures, “Trace-Element Laser Microanalyzer with Freedom from chemical matrix effect,” Anal. Chem. 51(3), 428–432 (1979).
[Crossref]

Akaoka, K.

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Al-Khateeb, A.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Al-Wazzan, R. A.

R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
[Crossref]

Amoruso, S.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

Aniculaesei, C.

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

Anoop, K. K.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Baker, S. A.

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
[Crossref]

Barefield, J. E.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Bastiaens, H. M. J.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

Beddows, D. C. S.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

Boller, K. J.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Bolshov, M.

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

Brumfield, B.

Bruzzese, R.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

Campbell, K. R.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Chaker, M.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Chan, S. Y.

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Chen, Q.-D.

Cheung, N. H.

N. H. Cheung, “Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis,” Appl. Spectrosc. Rev. 42(3), 235–250 (2007).
[Crossref]

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Chorvat, D.

D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).
[Crossref]

Chorvatova, A.

D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).
[Crossref]

Clegg, S. M.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Colgan, J. P.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Cox, J. M.

L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
[Crossref] [PubMed]

Cristoforetti, G.

E. Tognoni and G. Cristoforetti, “Signal and noise in laser-induced breakdown spectroscopy: an introductory review,” Opt. Laser Technol. 79, 164–172 (2016).
[Crossref]

E. Tognoni and G. Cristoforetti, “Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment,” J. Anal. At. Spectrom. 29(8), 1318–1338 (2014).
[Crossref]

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Dodge, R. E.

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

Doggett, B.

B. Doggett and J. G. Lunney, “Langmuir probe characterization of laser ablation plasmas,” J. Appl. Phys. 105(3), 033306 (2009).
[Crossref]

Doyle, L. A.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Duffin, A.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Eiden, G.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

Fedosejevs, R.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Geng, L.

L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
[Crossref] [PubMed]

Godwal, Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

Gormushkin, I. B.

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

Gornushkin, I. B.

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
[Crossref]

Goueguel, C.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

Groenen, R.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Guo, L. B.

Hahn, D. W.

Hao, Z. Q.

Hardy, J. T.

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

Harilal, S. S.

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24, 17941–17949 (2016).
[Crossref] [PubMed]

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23, 27113 (2015).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

He, Y.

L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
[Crossref] [PubMed]

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

Hoge, F. E.

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

Iimura, H.

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Inmaru, T.

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Ishii, K.

K. Ishii and T. Tahara, “Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle,” J. Phys. Chem. B 117(39), 11414–11422 (2013).
[Crossref] [PubMed]

Johns, H. M.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Judge, E. J.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Kaibara, H.

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

Kato, M.

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Khumaeni, A.

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Kilcrease, D. P.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Kim, J. E.

King, L. A.

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

Kokkin, D. L.

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

Koster, G.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Kwong, H. S.

H. S. Kwong and R. M. Measures, “Trace-Element Laser Microanalyzer with Freedom from chemical matrix effect,” Anal. Chem. 51(3), 428–432 (1979).
[Crossref]

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18(3), 281–286 (1979).
[Crossref] [PubMed]

LaHaye, N.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

LaHaye, N. L.

S. S. Harilal, N. L. LaHaye, and M. C. Phillips, “Two-dimensional fluorescence spectroscopy of laser-produced plasmas,” Opt. Lett. 41(15), 3547–3550 (2016).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

Lamb, M. J.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Laville, S.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Lewis, C. L. S.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
[Crossref]

Li, C. M.

Li, H.-L.

Li, J. M.

Li, X. Y.

Lindemann, C.

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[Crossref] [PubMed]

Loudyi, H.

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Lu, Y. F.

Lui, S. L.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

Lunney, J. G.

B. Doggett and J. G. Lunney, “Langmuir probe characterization of laser ablation plasmas,” J. Appl. Phys. 105(3), 033306 (2009).
[Crossref]

Ma, T.

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

Maeda, M.

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Y. Nakata, T. Okada, and M. Maeda, “Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes,” Opt. Lett. 24(23), 1765–1767 (1999).
[Crossref] [PubMed]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

Marose, S.

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[Crossref] [PubMed]

Martin, G. W.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Martinez, R. K.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

McInroy, R. E.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Measures, R. M.

H. S. Kwong and R. M. Measures, “Trace-Element Laser Microanalyzer with Freedom from chemical matrix effect,” Anal. Chem. 51(3), 428–432 (1979).
[Crossref]

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18(3), 281–286 (1979).
[Crossref] [PubMed]

Miyabe, M.

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

Morrow, T.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
[Crossref]

Muramoto, J.

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Muscarella, S.

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

Najmabadi, F.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Nakata, Y.

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Y. Nakata, T. Okada, and M. Maeda, “Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes,” Opt. Lett. 24(23), 1765–1767 (1999).
[Crossref] [PubMed]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

Niemax, K.

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

K. Niemax and W. Sdorra, “Optical emission spectrometry and laser-induced fluorescence of laser produced sample plumes,” Appl. Opt. 29(33), 5000–5006 (1990).
[Crossref] [PubMed]

Noll, R.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

O’Shay, B.

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Oba, M.

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Okada, T.

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Y. Nakata, T. Okada, and M. Maeda, “Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes,” Opt. Lett. 24(23), 1765–1767 (1999).
[Crossref] [PubMed]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

Omenetto, N.

Orsel, K.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Phillips, M. C.

Pohoata, V.

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

Polek, M.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Popa, G.

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

Quentmeier, A.

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

Rifaï, K.

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Rijnders, G.

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

Riley, D.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Sabsabi, M.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Samek, O.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

Scheper, T.

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[Crossref] [PubMed]

Sdorra, W.

Sequoia, K. L.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

Smith, B. W.

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
[Crossref]

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

Steimle, T.

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

Sun, H.-B.

Tahara, T.

K. Ishii and T. Tahara, “Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle,” J. Phys. Chem. B 117(39), 11414–11422 (2013).
[Crossref] [PubMed]

Tao, Y.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

Tao, Y. Z.

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

Taschuk, M. T.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

Taylor, N. R.

Telle, H. H.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

Tillack, M. S.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

Tiron, V.

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

Tognoni, E.

E. Tognoni and G. Cristoforetti, “Signal and noise in laser-induced breakdown spectroscopy: an introductory review,” Opt. Laser Technol. 79, 164–172 (2016).
[Crossref]

E. Tognoni and G. Cristoforetti, “Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment,” J. Anal. At. Spectrom. 29(8), 1318–1338 (2014).
[Crossref]

Tsui, Y. Y.

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

Vallabhan, C. P. G.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

Vidal, F.

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

Vitelaru, C.

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

Wakaida, I.

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

Weaver, I.

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Wiens, R. C.

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Winefordner, J. D.

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

I. B. Gornushkin, J. E. Kim, B. W. Smith, S. A. Baker, and J. D. Winefordner, “Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark,” Appl. Spectrosc. 51, 1055–1059 (1997).
[Crossref]

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

Xu, H.-L.

Yang, B.-S.

Yeak, J.

Yungel, J. K.

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

Zeng, X. Y.

Zhang, T.

Zhou, R.

Zou, Z. M.

Anal. Chem. (3)

H. S. Kwong and R. M. Measures, “Trace-Element Laser Microanalyzer with Freedom from chemical matrix effect,” Anal. Chem. 51(3), 428–432 (1979).
[Crossref]

S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence,” Anal. Chem. 80, 1995–2000 (2008).
[Crossref] [PubMed]

S. Y. Chan and N. H. Cheung, “Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy,” Anal. Chem. 72(9), 2087–2092 (2000).
[Crossref] [PubMed]

Analyst (Lond.) (1)

L. Geng, J. M. Cox, and Y. He, “Dynamic two-dimensional fluorescence correlation spectroscopy. Generalized correlation and experimental factors,” Analyst (Lond.) 126(8), 1229–1239 (2001).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72(2), 167–169 (1998).
[Crossref]

J. Muramoto, T. Inmaru, Y. Nakata, T. Okada, and M. Maeda, “Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection,” Appl. Phys. Lett. 77, 2334–2336 (2000).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

N. H. Cheung, “Spectroscopy of laser plumes for atto-mole and ng/g elemental analysis,” Appl. Spectrosc. Rev. 42(3), 235–250 (2007).
[Crossref]

Appl. Surf. Sci. (1)

G. W. Martin, L. A. Doyle, A. Al-Khateeb, I. Weaver, D. Riley, M. J. Lamb, T. Morrow, and C. L. S. Lewis, “Three-dimensional number density mapping in the plume of a low-temperature laser-ablated magnesium plasma,” Appl. Surf. Sci. 127–129, 710–715 (1998).
[Crossref]

Biotechnol. Prog. (1)

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (4)

C. Goueguel, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, “Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminium alloys,” J. Anal. At. Spectrom. 25(5), 635–644 (2010).
[Crossref]

H. Loudyi, K. Rifaï, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, “Improving laser-induced breakdown spectroscopy (LIBS) performance for iron and lead determination in aqueous solutions with laser-induced fluorescence (LIF),” J. Anal. At. Spectrom. 24, 1421–1428 (2009).
[Crossref]

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

E. Tognoni and G. Cristoforetti, “Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment,” J. Anal. At. Spectrom. 29(8), 1318–1338 (2014).
[Crossref]

J. Appl. Phys. (7)

B. Doggett and J. G. Lunney, “Langmuir probe characterization of laser ablation plasmas,” J. Appl. Phys. 105(3), 033306 (2009).
[Crossref]

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed Gaussian Sn plume for an extreme ultraviolet lithography source,” J. Appl. Phys. 101(2), 023305 (2007).
[Crossref]

Y. Nakata, H. Kaibara, T. Okada, and M. Maeda, “Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x,” J. Appl. Phys. 80(4), 2458–2466 (1996).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93(5), 2380–2388 (2003).
[Crossref]

S. S. Harilal, B. O’Shay, Y. Z. Tao, and M. S. Tillack, “Ambient gas effects on the dynamics of laser-produced tin plume expansion,” J. Appl. Phys. 99(8), 083303 (2006).
[Crossref]

C. Vitelaru, V. Pohoata, C. Aniculaesei, V. Tiron, and G. Popa, “The break-down of hyperfine structure coupling induced by the Zeeman effect on aluminum 2S1/2 - 2P1/2 transition, measured by tunable diode-laser induced fluorescence,” J. Appl. Phys. 109(8), 084911 (2011).
[Crossref]

J. Instrum. (1)

K. Orsel, R. Groenen, H. M. J. Bastiaens, G. Koster, G. Rijnders, and K. J. Boller, “Spatial and temporal mapping of Al and AlO during oxidation in pulsed laser ablation of LaAlO3,” J. Instrum. 8(10), C10021 (2013).
[Crossref]

J. Phys. B (1)

S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32(14), R131–R172 (1999).
[Crossref]

J. Phys. Chem. A (1)

T. Steimle, D. L. Kokkin, S. Muscarella, and T. Ma, “Detection of the Thorium Dimer via Two-Dimensional Fluorescence Spectroscopy,” J. Phys. Chem. A 119(35), 9281–9285 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

K. Ishii and T. Tahara, “Two-dimensional fluorescence lifetime correlation spectroscopy. 1. Principle,” J. Phys. Chem. B 117(39), 11414–11422 (2013).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

M. Oba, M. Miyabe, K. Akaoka, and I. Wakaida, “Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy,” Jpn. J. Appl. Phys. 55, 022401 (2016).
[Crossref]

Laser Phys. Lett. (1)

D. Chorvat and A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues,” Laser Phys. Lett. 6(3), 175–193 (2009).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

J. T. Hardy, F. E. Hoge, J. K. Yungel, and R. E. Dodge, “Remote detection of coral bleaching using pulsed-laser fluorescence spectroscopy,” Mar. Ecol. Prog. Ser. 88, 247–255 (1992).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

E. Tognoni and G. Cristoforetti, “Signal and noise in laser-induced breakdown spectroscopy: an introductory review,” Opt. Laser Technol. 79, 164–172 (2016).
[Crossref]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

R. A. Al-Wazzan, C. L. S. Lewis, and T. Morrow, “A technique for mapping three-dimensional number densities of species in laser produced plumes,” Rev. Sci. Instrum. 67(1), 85–88 (1996).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (9)

M. Miyabe, M. Oba, H. Iimura, K. Akaoka, A. Khumaeni, M. Kato, and I. Wakaida, “Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy,” Spectrochim. Acta B At. Spectrosc. 110, 101–117 (2015).
[Crossref]

B. W. Smith, I. B. Gornushkin, L. A. King, and J. D. Winefordner, “A laser ablation–atomic fluorescence technique for isotopically selective determination of lithium in solids,” Spectrochim. Acta B At. Spectrosc. 53(6-8), 1131–1138 (1998).
[Crossref]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B At. Spectrosc. 56, 933–945 (2001).
[Crossref]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B At. Spectrosc. 56, 947–960 (2001).
[Crossref]

S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, “Laser-induced fluorescence detection of lead atoms in a laser-induced plasma: An experimental analytical optimization study,” Spectrochim. Acta B At. Spectrosc. 64(4), 347–353 (2009).
[Crossref]

B. W. Smith, A. Quentmeier, M. Bolshov, and K. Niemax, “Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry,” Spectrochim. Acta B At. Spectrosc. 54, 943–958 (1999).
[Crossref]

I. B. Gormushkin, S. A. Baker, B. W. Smith, and J. D. Winefordner, “Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence,” Spectrochim. Acta B At. Spectrosc. 52(11), 1653–1662 (1997).
[Crossref]

S. S. Harilal, P. K. Diwakar, N. L. LaHaye, and M. C. Phillips, “Spatio-temporal evolution of uranium emission in laser-produced plasma,” Spectrochim. Acta B At. Spectrosc. 111, 1–7 (2015).
[Crossref]

J. E. Barefield, E. J. Judge, K. R. Campbell, J. P. Colgan, D. P. Kilcrease, H. M. Johns, R. C. Wiens, R. E. McInroy, R. K. Martinez, and S. M. Clegg, “Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B At. Spectrosc. 120, 1–8 (2016).
[Crossref]

Other (3)

H.-J. Kunze, Introductions to Plasma Spectroscopy (Springer, 2009).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

R. L. Kurucz, Atomic spectral line database, http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html , last accessed 09/27/2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic of the experimental setup (WP, waveplate; C, polarizing cube; BD, beam dump; L, lens; DPSS, diode pumped solid state laser; TiSa, Titanium Sapphire laser; M, mirror; TG, timing generator; ICCD, intensified charge-coupled device).
Fig. 2
Fig. 2 Partial energy diagrams of the U I (left) and Al I (right) transitions selected for the present study are given.
Fig. 3
Fig. 3 Time-resolved emission features from U-containing plumes in 45 Torr N2 recorded in the absence and presence of the LIF excitation beam. The 2D emission contours were obtained by recording the emission features with a temporal resolution of 2 µs.
Fig. 4
Fig. 4 2D contours of emission in the presence of the 394.38 nm resonant excitation beam at various pressure levels. The ICCD gains used were 100 for 100 Torr N2 and 150 for 475 and 760 Torr N2. The gate width used to record the temporal evolution was 2 µs.
Fig. 5
Fig. 5 (a) 2D-FS map is given showing LIF of U I and weak thermal emission from K I lines at 45 Torr N2 pressure. (b) Zoomed-in image of 2D-FS of U I transition. To obtain the 2D-FS map, the emission signal was collected at 404.275 nm while the excitation beam was tuned across the 394.3816 nm transition. (c) The excitation spectrum and (d) the emission spectrum. The circles represent the data points and the smooth curves are Voigt fits.
Fig. 6
Fig. 6 2D-FS maps of U I transitions at various N2 pressure levels: (a) 100 Torr, (b) 275 Torr, (c) 475 Torr, and (d) 760 Torr. All measurements were performed with 15 µs gate delay and 100 µs gate width.
Fig. 7
Fig. 7 (a) Excitation and (b) emission spectra obtained at various pressure levels. The excitation spectra are fitted with a Voigt function to obtain the linewidths.
Fig. 8
Fig. 8 (a) The measured FWHM from the excitation spectral line shape for various pressure levels is given. A Voigt function was used for fitting; the Gaussian and Lorentzian FWHM components are also given. (b) The LIF and LIBS signal variation with pressure for the U I transition.
Fig. 9
Fig. 9 (a) 2D-FS of U I and Al I transitions. The measurement was performed at 100 Torr N2 pressure by scanning the excitation beam through both resonance transitions, and the resonant emission was recorded. A gate delay and width of 30 µs and 40 µs, respectively, were used. (b) Excitation spectrum. (c) Emission spectrum – top panel gives the emission spectrum when the excitation beam was at 394.4 nm; bottom panel – emission spectrum when the excitation beam was at 394.3816 nm U I. (d) Emission spectrum when the excitation beam was at resonance with U I and AI transitions along with non-resonance position (LIBS).

Metrics