Abstract

We demonstrate a significant improvement in the performance of a fiber-based frequency comb when a GPS-disciplined Rb clock is replaced with an acetylene-stabilized laser as the frequency reference. We have developed a compact, maintenance-free acetylene-stabilized fiber laser with a sub-kHz short-term linewidth and an Allan deviation below 3×10−13 for integration times above 1 s. Switching the comb reference from the Rb clock to the acetylene-stabilized laser improves both comb tooth linewidth and Allan deviation by about two orders of magnitude. Furthermore, long-term measurements of the acetylene-stabilized laser frequency with reference to the GPS-disciplined clock indicate a potential relative frequency uncertainty of 2 × 10−12.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

Karl A. Tillman, Rajesh Thapa, Kevin Knabe, Shun Wu, Jinkang Lim, Brian R. Washburn, and Kristan L. Corwin
Appl. Opt. 48(36) 6980-6989 (2009)

Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber

Shun Wu, Chenchen Wang, Coralie Fourcade-Dutin, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Opt. Express 22(19) 23704-23715 (2014)

A phase-stabilized carbon nanotube fiber laser frequency comb

Jinkang Lim, Kevin Knabe, Karl A. Tillman, William Neely, Yishan Wang, Rodrigo Amezcua-Correa, François Couny, Philip S. Light, Fetah Benabid, Jonathan C. Knight, Kristan L. Corwin, Jeffrey W. Nicholson, and Brian R. Washburn
Opt. Express 17(16) 14115-14120 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
    [Crossref] [PubMed]
  2. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).
    [Crossref]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  4. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8, 465–540 (2016).
    [Crossref]
  5. P. Balling, P. Křen, P. Mašika, and S.A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17, 9300–9313 (2009).
    [Crossref] [PubMed]
  6. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,”, Optica 3, 414–426 (2016).
    [Crossref]
  7. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
    [Crossref]
  8. A. G. Glenday, C.-H. Li, N. Langellier, G. Chang, L.-J. Chen, G. Furesz, A. A. Zibrov, F. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph,” Optica 2, 250–254 (2015).
    [Crossref]
  9. W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
    [Crossref]
  10. T. Puppe, A. Sell, R. Kliese, N. Hoghooghi, A. Zach, and W. Kaenders, “Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency,” Opt. Lett. 41, 1877–1880 (2016).
    [Crossref] [PubMed]
  11. T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
    [Crossref] [PubMed]
  12. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
    [Crossref]
  13. D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
    [Crossref]
  14. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
    [Crossref] [PubMed]
  15. Bureau International des Poids et Mesures (BIPM), “Recommended values of standard frequencies,” http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html
  16. J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J.E. Pedersen, “Fiber laser optical frequency standard at 1.54 µ m,” Opt. Express 19, 2052–2063 (2011).
    [Crossref] [PubMed]
  17. C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
    [Crossref]
  18. A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
    [Crossref]
  19. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  20. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
    [Crossref]
  21. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
    [Crossref] [PubMed]
  22. NKT Photonics, BASIK Koheras X15 datasheet, http://www.nktphotonics.com/wp-content/uploads/2015/04/koheras-basik-all-160907.pdf
  23. J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” in 28th Annual Symposium on Frequency Control (IEEE, 1974), pp. 243–246.
  24. T. Liu, Y. N. Zhao, V. Elman, A. Stejskal, and L. J. Wang, “Characterization of the absolute frequency stability of an individual reference cavity,” Opt. Lett. 34, 190–192 (2009).
    [Crossref] [PubMed]
  25. V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
    [Crossref]
  26. N. Von Bandel, M. Myara, M. Sellahi, T. Souici, R. Dardaillon, and P. Signoret, “Time-dependent laser linewidth: beat-note digital acquisition and numerical analysis,” Opt. Express 24, 27961–27978 (2016).
    [Crossref] [PubMed]
  27. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
    [Crossref]
  28. DFM, Stabiλaser 1542 datasheet, http://www.stabilaser.dk/sites/stabilaser.dk/files/Stabilaser.pdf

2016 (4)

2015 (1)

2014 (1)

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

2013 (1)

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

2012 (3)

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20, 16010–16016 (2012).
[Crossref] [PubMed]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

2011 (2)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J.E. Pedersen, “Fiber laser optical frequency standard at 1.54 µ m,” Opt. Express 19, 2052–2063 (2011).
[Crossref] [PubMed]

2010 (1)

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
[Crossref]

2009 (4)

T. Liu, Y. N. Zhao, V. Elman, A. Stejskal, and L. J. Wang, “Characterization of the absolute frequency stability of an individual reference cavity,” Opt. Lett. 34, 190–192 (2009).
[Crossref] [PubMed]

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

P. Balling, P. Křen, P. Mašika, and S.A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17, 9300–9313 (2009).
[Crossref] [PubMed]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (1)

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).
[Crossref]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Abgrall, M.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Acef, O.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Ahtee, V.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[Crossref]

Akamatsu, D.

Allan, D. W.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” in 28th Annual Symposium on Frequency Control (IEEE, 1974), pp. 243–246.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Argence, B.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Balling, P.

Baumann, E.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Bize, S.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Chang, G.

Chen, L.-J.

Clairon, A.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,”, Optica 3, 414–426 (2016).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Dardaillon, R.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Di Domenico, G.

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
[Crossref]

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Du Burck, F.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Elman, V.

English, E. M. L.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Fischer, M.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
[Crossref] [PubMed]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Furesz, G.

Giorgetta, F. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Glenday, A. G.

Gray, J. E.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” in 28th Annual Symposium on Frequency Control (IEEE, 1974), pp. 243–246.

Guéna, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Hald, J.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hoghooghi, N.

Hollberg, L.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Holleville, D.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Holzwarth, R.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hong, F.-L.

Hosaka, K.

Hrabina, J.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Inaba, H.

Jiang, H.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Kaenders, W.

Kärtner, F.

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8, 465–540 (2016).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Kliese, R.

Kren, P.

Kubina, P.

Langellier, N.

Le Coq, Y.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Le Targat, R.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Li, C.-H.

Liu, T.

Lours, M.

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Mašika, P.

Merimaa, M.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[Crossref]

Millo, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Minh-Pham, T.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Myara, M.

Nakajima, Y.

Newbury, N.

Newbury, N. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Nicolodi, D.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

Nielsen, L.

Nyholm, K.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Onae, A.

Ortega, D.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Pedersen, J.E.

Petersen, J. C.

Philippe, C.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Phillips, D. F.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Puppe, T.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Santarelli, G.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Sasselov, D.

Schilt, S.

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Sell, A.

Sellahi, M.

Signoret, P.

Song, Y.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8, 465–540 (2016).
[Crossref]

Souici, T.

Stalnaker, J. E.

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Stejskal, A.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

Swann, W.

Swann, W. C.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Szentgyorgyi, A.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Thomann, P.

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
[Crossref]

Tobar, M. E.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

van den Berg, S.A.

Varming, P.

Von Bandel, N.

Walsworth, R. L.

Wang, L. J.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Wolf, P.

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

Yasuda, M.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

Zach, A.

Zhang, W.

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

Zhao, Y. N.

Zibrov, A. A.

Zolot, A. M.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8, 465–540 (2016).
[Crossref]

Appl. Optics (1)

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Optics 49, 4801–4807 (2010).
[Crossref]

Appl. Phys. Lett. (1)

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Control (1)

W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, and Y. Le Coq, “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason., Ferroelect., Freq. Control,  59, 432–438 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spectrosc. Radiat. Transfer 118, 26–39 (2013).
[Crossref]

Nat. Photonics (3)

D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq, “Spectral purity transfer between optical wavelengths at the 10−18 level,” Nat. Photonics 8, 219–223 (2014).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

T. M. Fortier, Y. Le Coq, J. E. Stalnaker, D. Ortega, S. A. Diddams, C. W. Oates, and L. Hollberg, “Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb,” Phys. Rev. Lett. 97, 163905 (2006).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).
[Crossref]

Other (6)

Bureau International des Poids et Mesures (BIPM), “Recommended values of standard frequencies,” http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html

C. Philippe, R. Le Targat, D. Holleville, M. Lours, T. Minh-Pham, J. Hrabina, F. Du Burck, P. Wolf, and O. Acef, “Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range,” presented at the European Frequency and Time Forum (EFTF), York, United Kingdom, April 4–7 2016.
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, (2016).
[Crossref]

NKT Photonics, BASIK Koheras X15 datasheet, http://www.nktphotonics.com/wp-content/uploads/2015/04/koheras-basik-all-160907.pdf

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” in 28th Annual Symposium on Frequency Control (IEEE, 1974), pp. 243–246.

DFM, Stabiλaser 1542 datasheet, http://www.stabilaser.dk/sites/stabilaser.dk/files/Stabilaser.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup for characterizing the frequency comb performance. AOM: acousto-optic modulator, PD: photo detector, FSC: fiber-to-free space coupler, λ/2: half-wave plate. Sλ3: one of the acetylene-stabilized fiber lasers.
Fig. 2
Fig. 2 Relative frequency instabilities of Sλ1 (blue), Sλ2 (black) and Sλ3 (red). Data are concatenated from a 150 ms cycle time acquisition for τ < 1 s and a 1.1 s cycle time acquisition for τ ≥ 1 s. This graph also features a 3 × 10 13 / τ / s gray line to highlight the white-noise-dominated domain.
Fig. 3
Fig. 3 FFT spectrum of a single beat note measurement between Sλ1 and Sλ3 with a 100 ms sampling time and 50 MHz sampling rate. The black points are data from the FFT analysis of the beat note time series, where each point is averaged over a 50 Hz window. The fitted curve (red) is a sum of a Lorentzian and Gaussian profile (see text). Inset: Direct measurements of the FWHM linewidth as a function of sampling time obtained from 9 independent acquisitions with the sample standard deviations as error bars. The green curve represents the Fourier-limited linewidth.
Fig. 4
Fig. 4 Frequency instability of the beat note between Sλ3 and the comb locked to either the Rb clock (blue curve) or Sλ1 (red curve). The Allan deviation measured directly between Sλ1 and Sλ3 is shown in gray as a benchmark. The specified Allan deviation (upper limit) for the FS725 Rb clock is shown in black. All error bars are sample standard deviations of the Allan deviations measured for each τ.
Fig. 5
Fig. 5 Spectrum of a single tooth for the Rb clock referenced comb with a 10 ms sampling time at a 125 MHz sampling rate. The black points are from the FFT analysis of the beat note time series, where each point is averaged over a 50 Hz window. The fitted curve (red) is a pure Gaussian profile. Inset: Direct measurements of the FWHM linewidth as a function of sampling time with error bars as sample standard deviations.
Fig. 6
Fig. 6 Spectrum of the Sλ1-locked comb with a beat note sampling time of 100 ms at a sampling rate of 25 MHz. Inset: Direct measurements of the FWHM linewidth as a function of sampling time with error bars as sample standard deviations. The green curve represents the Fourier-limited linewidth.
Fig. 7
Fig. 7 Frequency measurements f S λ 1 offset by the average of all the frequency measurements, 〈fSλ1〉 = 194 369 613 088.9 kHz, over a period of more than 45 days. The frequency data are derived from the measured repetition rate averaged over one-hour windows. Outliers more than five standard deviations from the mean value correspond to out-of-lock measurements and have been removed. The linear fit (red line) gives a drift of (0.49 ± 0.54) Hz/day.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f n = n f rep + f ceo ,
f S λ 1 ( n 0 f rep , opt + f ceo ) = f beat = 60 MHz ,
σ i 2 = 1 2 ( σ i j 2 + σ i k 2 σ j k 2 ) ,
f S λ 1 = n 0 f rep , opt + f ceo + f beat ,

Metrics