Abstract

Dynamic optical networking has promising potential to support the rapidly changing traffic demands in metro and long-haul networks. However, the improvement in dynamicity is hindered by wavelength-dependent power excursions in gain-controlled erbium doped fiber amplifiers (EDFA) when channels change rapidly. We introduce a general approach that leverages machine learning (ML) to characterize and mitigate the power excursions of EDFA systems with different equipment and scales. An ML engine is developed and experimentally validated to show accurate predictions of the power dynamics in cascaded EDFAs. Recommended channel provisioning based on the ML predictions achieves within 1% error of the lowest possible power excursion over 94% of the time. We also showcase significant mitigation of EDFA power excursions in super-channel provisioning when compared to the first-fit wavelength assignment algorithm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient Link Control Technique Applied to Optical Hybrid Amplifier (EDFA + DFRA) Cascades

Bárbara Dumas and Ricardo Olivares
J. Opt. Commun. Netw. 4(11) 858-864 (2012)

Dual-wavelength source based optical circuit switching and wavelength reconfiguration in multi-hop ROADM systems

Weiyang Mo, Shengxiang Zhu, Yao Li, and Daniel C. Kilper
Opt. Express 25(22) 27736-27749 (2017)

Channel Power Excursions From Single-Step Channel Provisioning

Joseph Junio, Daniel C. Kilper, and Vincent W. S. Chan
J. Opt. Commun. Netw. 4(9) A1-A7 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Ahsan, C. Browning, M. S. Wang, K. Bergman, D. C. Kilper, and L. P. Barry, “Excursion-free dynamic wavelength switching in amplified optical networks,” J. Opt. Commun. Netw. 7(9), 898–905 (2015).
    [Crossref]
  2. M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).
  3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  4. P. Samadi, K. Wen, J. Xu, and K. Bergman, “Software-defined optical network for metro-scale geographically distributed data centers,” Opt. Express 24(11), 12310–12320 (2016).
    [Crossref] [PubMed]
  5. P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
    [Crossref]
  6. D. C. Kilper, M. Bhopalwala, H. Rastegarfar, and W. Mo, “Optical power dynamics in wavelength layer software defined networking,” in Advanced Photonics (2015).
  7. A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
    [Crossref]
  8. C. Tian and S. Kinoshita, “Analysis and control of transient dynamics of EDFA pumped by 1480- and 980-nm lasers,” J. Lightwave Technol. 21(8), 1728–1734 (2003).
    [Crossref]
  9. D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
    [Crossref]
  10. E. A. Barboza, C. J. A. Bastos-filho, J. F. Martins-Filho, U. C. de Moura, and J. R. F. de Oliveira, “Self-adaptive Erbium-doped fiber amplifiers using machine learning,” in International Microwave & Optoelectronics Conference (2013).
  11. P. J. Lin, “Reducing optical power variation in amplified optical network,” in International Conference on Communication Technology (2003).
    [Crossref]
  12. N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
    [Crossref]
  13. J. Junio, D. C. Kilper, and V. W. S. Chan, “Channel power excursions from single-step channel provisioning,” J. Opt. Commun. Netw. 4(9), A1–A7 (2012).
    [Crossref]
  14. K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference (2014).
    [Crossref]
  15. I. de Miguel, R. J. Durán, T. Jiménez, N. Fernández, J. C. Aguado, R. M. Lorenzo, A. Caballero, I. T. Monroy, Y. Ye, A. Tymecki, I. Tomkos, M. Angelou, D. Klonidis, A. Francescon, D. Siracusa, and E. Salvadori, “Cognitive dynamic optical networks,” J. Opt. Commun. Netw. 5(10), A107–A118 (2013).
    [Crossref]
  16. Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).
  17. U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
    [Crossref]
  18. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).
  19. J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
    [Crossref]
  20. H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

2016 (1)

2015 (1)

2013 (1)

2012 (1)

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

2003 (1)

2000 (1)

H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

1997 (1)

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

Aguado, J. C.

Ahsan, A. S.

Andrade, A.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Angelou, M.

Barry, L. P.

Bayart, D.

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

Bergman, K.

P. Samadi, K. Wen, J. Xu, and K. Bergman, “Software-defined optical network for metro-scale geographically distributed data centers,” Opt. Express 24(11), 12310–12320 (2016).
[Crossref] [PubMed]

A. S. Ahsan, C. Browning, M. S. Wang, K. Bergman, D. C. Kilper, and L. P. Barry, “Excursion-free dynamic wavelength switching in amplified optical networks,” J. Opt. Commun. Netw. 7(9), 898–905 (2015).
[Crossref]

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

Bergmen, K.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Borne, S.

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

Bottari, G.

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

Browning, C.

Caballero, A.

Carvalho, H.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Carvalho, L. H. H.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Castoldi, P.

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

Cesar, A. C.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Chan, V. W. S.

Conforti, E.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Cugini, F.

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

de Miguel, I.

Diniz, J. C. M.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Durán, R. J.

Fernández, N.

Fiorani, M.

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

Francescon, A.

Garrich, M.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Gonzalez, N. G.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Guan, H.

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

Gutterman, C. L.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Huang, Y.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Iovanna, P.

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

Ishii, K.

K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference (2014).
[Crossref]

Jiménez, T.

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Jue, J. P.

H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

Junio, J.

Kilper, D. C.

Kinoshita, S.

Klonidis, D.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kurumida, J.

K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference (2014).
[Crossref]

Li, Z.

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

Lin, P. J.

P. J. Lin, “Reducing optical power variation in amplified optical network,” in International Conference on Communication Technology (2003).
[Crossref]

Lorenzo, R. M.

Lourdiane, M.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Magalhães, E. C.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Margarido, F.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Martinelli, C.

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Mongardien, D. A.

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

Monroy, I. T.

Moura, U.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Mukherjee, B.

H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

Namiki, S.

K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference (2014).
[Crossref]

Oliveira, J.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Oliveira, J. C. R. F.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Oliveira, J. R. F.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Pataca, D. M.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Reis, J. D.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Rozental, V. N.

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Salvadori, E.

Samadi, P.

P. Samadi, K. Wen, J. Xu, and K. Bergman, “Software-defined optical network for metro-scale geographically distributed data centers,” Opt. Express 24(11), 12310–12320 (2016).
[Crossref] [PubMed]

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

Sambo, N.

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

Samoud, W.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Shen, Y.

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

Simonneau, C.

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

Siracusa, D.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Srivastava, A. K.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

Sulhoff, J. W.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

Sun, Y.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

Svolenski, M.

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tian, C.

Tomkos, I.

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tymecki, A.

Wang, M. S.

Ware, C.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Wen, K.

P. Samadi, K. Wen, J. Xu, and K. Bergman, “Software-defined optical network for metro-scale geographically distributed data centers,” Opt. Express 24(11), 12310–12320 (2016).
[Crossref] [PubMed]

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

Wosinska, L.

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

Xu, J.

P. Samadi, K. Wen, J. Xu, and K. Bergman, “Software-defined optical network for metro-scale geographically distributed data centers,” Opt. Express 24(11), 12310–12320 (2016).
[Crossref] [PubMed]

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

Ye, Y.

Zang, H.

H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

Zussman, G.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

Zyskind, J. L.

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, “EDFA transient response to channel loss in WDM transmission system,” IEEE Photonics Technol. Lett. 9(3), 386–388 (1997).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (3)

Opt. Express (1)

Opt. Networks Mag. (1)

H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. Networks Mag. 1(1), 47–60 (2000).

Other (12)

P. Samadi, J. Xu, K. Wen, H. Guan, Z. Li, and K. Bergman, “Experimental demonstration of converged inter / intra data center network architecture,” in 17th International Conference on Transparent Optical Networks (2015).
[Crossref]

D. C. Kilper, M. Bhopalwala, H. Rastegarfar, and W. Mo, “Optical power dynamics in wavelength layer software defined networking,” in Advanced Photonics (2015).

D. A. Mongardien, S. Borne, C. Martinelli, C. Simonneau, and D. Bayart, “Managing channels add/drop in flexible networks based on hybrid raman / Erbium amplified spans,” in European Conference and Exhibition on Optical Communication (2006).
[Crossref]

E. A. Barboza, C. J. A. Bastos-filho, J. F. Martins-Filho, U. C. de Moura, and J. R. F. de Oliveira, “Self-adaptive Erbium-doped fiber amplifiers using machine learning,” in International Microwave & Optoelectronics Conference (2013).

P. J. Lin, “Reducing optical power variation in amplified optical network,” in International Conference on Communication Technology (2003).
[Crossref]

N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in European Conference and Exhibition on Optical Communication (2012).
[Crossref]

M. Fiorani, P. Samadi, Y. Shen, L. Wosinska, and K. Bergman, “Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers,” in European Conference and Exhibition on Optical Communication (2016).

K. Ishii, J. Kurumida, and S. Namiki, “Wavelength assignment dependency of AGC EDFA gain offset under dynamic optical circuit switching,” in Optical Fiber Communication Conference (2014).
[Crossref]

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P. Samadi, and K. Bergmen, “A machine learning approach for dynamic optical channel add / drop strategies that minimize EDFA power excursions,” in European Conference and Exhibition on Optical Communication (2016).

U. Moura, M. Garrich, H. Carvalho, M. Svolenski, A. Andrade, F. Margarido, A. C. Cesar, E. Conforti, and J. Oliveira, “SDN-enabled EDFA gain adjustment cognitive methodology for dynamic optical networks,” in European Conference and Exhibition on Optical Communication (2015).
[Crossref]

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).

J. D. Reis, M. Garrich, D. M. Pataca, J. C. M. Diniz, V. N. Rozental, L. H. H. Carvalho, E. C. Magalhães, U. Moura, N. G. Gonzalez, J. R. F. Oliveira, and J. C. R. F. Oliveira, “Flexible optical transmission systems for future networking,” in International Telecommunications Network Strategy and Planning Symposium (Networks) (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Setup of the multi-span EDFA system; the additional EDFA and VOA in the dashed box are included for the 3-span system.

Fig. 2
Fig. 2

Measured post-EDFA power spectra with 24 ON channels for both systems. Channels 1 to 24 correspond to ITU-T C-band 194.40THz to 192.10THz with 100GHz spacing. Channels are launched with uniform power.

Fig. 3
Fig. 3

Associated weights assigned to each channel by RR for the 2-span and 3-span EDFA systems, indicating each channel’s contribution to the post-EDFA power discrepancy in respective systems.

Fig. 4
Fig. 4

Reduction of the ML models’ prediction MSEs of power STDEV with increasing training data size.

Fig. 5
Fig. 5

Comparisons between predictions and measurements of post-EDFA power discrepancy for single-channel add (a) and drop (b). The top four slot options with the lowest predicted power STDEV are circled. (c) and (d) illustrate the good channels to add/drop, and the worst channels to avoid. (e) and (f) compare the post-EDFA power spectra of ON channels between the best and worst cases in channel add and drop, respectively.

Fig. 6
Fig. 6

Correlation between the prediction MSE (horizontal axis) and the percentage of accurate recommendations (vertical axis) for KBR and RR for the (a) 2-span and (b) 3-span EDFA systems. The percentage of accurate recommendations reflects the number of tests in which the ML engine correctly recommends the top channels, out of the 200 tests performed.

Fig. 7
Fig. 7

CDF of the percent error between the power discrepancy of recommended options and the actual lowest power discrepancy, plotted for single channel candidates based on KBR, RR, and random selections of channels for the (a) 2-span and (b) 3-span EDFA systems. Compared to random selections, ML recommendations with KBR and RR show significant improvement in approaching the lowest possible post-EDFA power discrepancy.

Fig. 8
Fig. 8

CDF of the percent error between the power discrepancy of recommended options and the actual lowest power discrepancy, at different training data sizes. (a) and (b) illustrate for the KBR model on the 2-span and 3-span EDFA systems respectively. (c) and (d) illustrate for the RR model on the 2-span and 3-span EDFA systems respectively.

Fig. 9
Fig. 9

Functional workflow of the ML engine that enables super-channel addition with the least induced power excursions and post-EDFA power discrepancies.

Fig. 10
Fig. 10

Comparisons between predictions and measurements of post-EDFA power discrepancy for super-channel addition consisting of (a) two contiguous sub-channels and (b) three contiguous sub-channels. The top two super-channel candidates with the lowest predicted power STDEV are circled. (c) and (d) illustrate the best, good, and worst super-channel candidates.

Fig. 11
Fig. 11

Twenty randomly initialized scenarios to compare the resultant power STDEV values among super-channel additions based on actual measurements, ML predictions, and the first-fit allocation algorithm for (a) two-channel-wide and (b) three-channel-wide super-channels in the 3-span EDFA system.

Fig. 12
Fig. 12

Illustration of channel add/drop operations at the intermediate EDFA node.

Tables (1)

Tables Icon

Table 1 Time consumption of training and prediction for RR and KBR.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x ij prep = x ij x ¯ j σ j ,
y ij prep = y ij y ¯ j .
w RR =arg min w ( yXw 2 +λ w 2 ),
w RR = ( λI+ X T X ) 1 X T y,
K(x,x')=αexp( 1 b xx' 2 ),

Metrics