Abstract

We report an experimental study on the spectral dependence of depolarized guided acoustic-wave Brillouin scattering (GAWBS) in a silica single-mode fiber (SMF) on acoustic impedance of external materials. The GAWBS spectrum was measured when the acoustic impedance was changed from 1.51 to 2.00 kg/s·mm2. With increasing acoustic impedance, the linewidth increased; the dependence was almost linear with an acoustic impedance dependence coefficient of 0.16 MHz/kg/s·mm2. Meanwhile, with increasing acoustic impedance, the central frequency linearly decreased with an acoustic impedance dependence coefficient of −0.07 MHz/kg/s·mm2. These characteristics are potentially applicable to acoustic impedance sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering

Yair Antman, Alex Clain, Yosef London, and Avi Zadok
Optica 3(5) 510-516 (2016)

Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers

Weiwen Zou, Zuyuan He, and Kazuo Hotate
Opt. Express 16(23) 18804-18812 (2008)

FSBS resonances observed in a standard highly nonlinear fiber

Jing Wang, Yunhui Zhu, Rui Zhang, and Daniel J. Gauthier
Opt. Express 19(6) 5339-5349 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
    [Crossref] [PubMed]
  2. A. J. Poustie, “Bandwidth and mode intensities of guided acoustic-wave Brillouin scattering in optical fibers,” J. Opt. Soc. Am. B 10(4), 691–696 (1993).
    [Crossref]
  3. Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3(5), 510–516 (2016).
    [Crossref]
  4. T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  5. J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
    [Crossref] [PubMed]
  6. Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
    [Crossref] [PubMed]
  7. Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
    [Crossref]
  8. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).
  9. L. E. Y. Herrera, G. C. Amaral, and J. P. von der Weid, “Investigation of bend loss in single mode fibers with ultra-high-resolution photon-counting optical time domain reflectometer,” Appl. Opt. 55(5), 1177–1182 (2016).
    [Crossref] [PubMed]
  10. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique––Proposal, experiment and simulation––,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  11. R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
    [Crossref]
  12. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  13. N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
    [Crossref]
  14. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  15. Schlumberger Limited, Log Interpretation Principles/ Applications (Schlumberger Educational Services, Texas, 1991).
  16. M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
    [Crossref] [PubMed]
  17. Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
    [Crossref]
  18. Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
    [Crossref]
  19. N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
    [Crossref]
  20. Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 11(7), 865–867 (1999).
    [Crossref]
  21. Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 10(12), 1769–1771 (1998).
    [Crossref]
  22. M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
    [Crossref]
  23. B. I. Greene and P. N. Saeta, “Low-frequency line shapes in guided acoustic-wave Brillouin scattering,” Appl. Phys. Lett. 65(18), 2269–2271 (1994).
    [Crossref]
  24. J. Saneyoshi, Y. Kikuchi, and O. Nomoto, Cho-onpa Gijutsu Binran (Handbook of Ultrasonic Technology) (Nikkan Kogyo, 1978).
  25. J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in a standard highly nonlinear fiber,” Opt. Express 19(6), 5339–5349 (2011).
    [Crossref] [PubMed]

2016 (4)

Y. Antman, A. Clain, Y. London, and A. Zadok, “Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering,” Optica 3(5), 510–516 (2016).
[Crossref]

L. E. Y. Herrera, G. C. Amaral, and J. P. von der Weid, “Investigation of bend loss in single mode fibers with ultra-high-resolution photon-counting optical time domain reflectometer,” Appl. Opt. 55(5), 1177–1182 (2016).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

2015 (1)

2014 (4)

J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
[Crossref] [PubMed]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
[Crossref]

2013 (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

2012 (1)

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

2011 (2)

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

J. Wang, Y. Zhu, R. Zhang, and D. J. Gauthier, “FSBS resonances observed in a standard highly nonlinear fiber,” Opt. Express 19(6), 5339–5349 (2011).
[Crossref] [PubMed]

2008 (1)

2004 (1)

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
[Crossref]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique––Proposal, experiment and simulation––,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1999 (1)

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 11(7), 865–867 (1999).
[Crossref]

1998 (1)

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 10(12), 1769–1771 (1998).
[Crossref]

1994 (1)

B. I. Greene and P. N. Saeta, “Low-frequency line shapes in guided acoustic-wave Brillouin scattering,” Appl. Phys. Lett. 65(18), 2269–2271 (1994).
[Crossref]

1993 (1)

1992 (1)

M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
[Crossref]

1989 (1)

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Abdelmalek, M. F.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Amaral, G. C.

Antman, Y.

Ba, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Bao, X.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Chen, L.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Clain, A.

Diehl, A. M.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Dong, Y.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

Gauthier, D. J.

Greene, B. I.

B. I. Greene and P. N. Saeta, “Low-frequency line shapes in guided acoustic-wave Brillouin scattering,” Appl. Phys. Lett. 65(18), 2269–2271 (1994).
[Crossref]

Guy, C. D.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique––Proposal, experiment and simulation––,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Hayashi, N.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
[Crossref]

He, Z.

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Herrera, L. E. Y.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Hotate, K.

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique––Proposal, experiment and simulation––,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

Jiang, T.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Kato, Y.

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

Kazuyki, S.

M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
[Crossref]

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

Kurokawa, T.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
[Crossref]

Lee, H.

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Li, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Loayssa, A.

London, Y.

Lu, Z.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Moser, B.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
[Crossref]

Naotaka, S.

M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
[Crossref]

Nightingale, K. R.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Ogusu, K.

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 11(7), 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 10(12), 1769–1771 (1998).
[Crossref]

Ohashi, M.

M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
[Crossref]

Palmeri, M. L.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Poustie, A. J.

Rouze, N. C.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Saeta, P. N.

B. I. Greene and P. N. Saeta, “Low-frequency line shapes in guided acoustic-wave Brillouin scattering,” Appl. Phys. Lett. 65(18), 2269–2271 (1994).
[Crossref]

Sagues, M.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Tanaka, Y.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
[Crossref]

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 11(7), 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 10(12), 1769–1771 (1998).
[Crossref]

Tateda, M.

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Teng, L.

Tong, P.

Urricelqui, J.

von der Weid, J. P.

Wada, Y.

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

Wang, J.

Wang, M. H.

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

Yamashita, R. K.

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

Yoshida, H.

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
[Crossref]

Zadok, A.

Zhang, H.

Y. Dong, L. Teng, P. Tong, T. Jiang, H. Zhang, T. Zhu, L. Chen, X. Bao, and Z. Lu, “High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings,” Opt. Lett. 40(21), 5003–5006 (2015).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhang, R.

Zhou, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhu, C.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

Zhu, T.

Zhu, Y.

Zou, W.

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. I. Greene and P. N. Saeta, “Low-frequency line shapes in guided acoustic-wave Brillouin scattering,” Appl. Phys. Lett. 65(18), 2269–2271 (1994).
[Crossref]

Electron. Lett. (1)

M. Ohashi, S. Naotaka, and S. Kazuyki, “Fibre diameter estimation based on guided acoustic wave Brillouin scattering,” Electron. Lett. 28(10), 900–902 (1992).
[Crossref]

IEEE Photonics J. (2)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photonics J. 5(3), 2600407 (2013).
[Crossref]

N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photonics J. 8(3), 7100707 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Tanaka and K. Ogusu, “Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 11(7), 865–867 (1999).
[Crossref]

Y. Tanaka and K. Ogusu, “Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering,” IEEE Photonics Technol. Lett. 10(12), 1769–1771 (1998).
[Crossref]

R. K. Yamashita, W. Zou, Z. He, and K. Hotate, “Measurement range elongation based on temporal gating in Brillouin optical correlation domain distributed simultaneous sensing of strain and temperature,” IEEE Photonics Technol. Lett. 24(12), 1006–1008 (2012).
[Crossref]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (2014).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique––Proposal, experiment and simulation––,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Hepatol. (1)

M. L. Palmeri, M. H. Wang, N. C. Rouze, M. F. Abdelmalek, C. D. Guy, B. Moser, A. M. Diehl, and K. R. Nightingale, “Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease,” J. Hepatol. 55(3), 666–672 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

N. Hayashi, Y. Mizuno, and K. Nakamura, “Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers,” J. Lightwave Technol. 32(21), 3399–3401 (2014).
[Crossref]

T. Horiguchi and M. Tateda, “BOTDA–nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Kato, Y. Wada, Y. Mizuno, and K. Nakamura, “Measurement of elastic wave propagation velocity near tissue surface through optical coherence tomography and laser Doppler velocimetry,” Jpn. J. Appl. Phys. 53(7S), 07KF05 (2014).
[Crossref]

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Meas. Sci. Technol. (1)

Y. Tanaka, H. Yoshida, and T. Kurokawa, “Guided-acoustic-wave Brillouin scattering observed backward by stimulated Brillouin scattering,” Meas. Sci. Technol. 15(8), 1458–1461 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B Condens. Matter (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter 31(8), 5244–5252 (1985).
[Crossref] [PubMed]

Other (2)

J. Saneyoshi, Y. Kikuchi, and O. Nomoto, Cho-onpa Gijutsu Binran (Handbook of Ultrasonic Technology) (Nikkan Kogyo, 1978).

Schlumberger Limited, Log Interpretation Principles/ Applications (Schlumberger Educational Services, Texas, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic setup for observing depolarized GAWBS. ESA, electrical spectrum analyzer; PC, polarization controller; PD, photo detector; PL, polarizer.
Fig. 2
Fig. 2 Depolarized GAWBS spectra corresponding to the TR2,5 mode. (a) Raw data, (b) noise floor, and (c) compensated plot. The dotted line in (c) indicates its Lorentzian fit.
Fig. 3
Fig. 3 Measured acoustic impedance dependences of (a) depolarized GAWBS spectrum, (b) its linewidth, and (c) its central frequency.

Tables (1)

Tables Icon

Table 1 Acoustic impedance of sucrose solution.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v GB,m = v s y m πd ,
| (3 y m 2 2 ) J 2 (α y m ) (6 y m 2 2 ) J 2 ( y m )3 y m J 3 ( y m ) J 2 (α y m )α y m J 3 (α y m ) (2 y m 2 2 ) J 2 ( y m ) y m J 3 ( y m ) |=0,
Δ GB = v s β π ,

Metrics