Abstract

Laser scanning microscopy is limited in lateral resolution by the diffraction of light. We show that we can obtain twenty percent improvement in the resolution of confocal microscopy using Bessel-Gauss beams with the right pinhole size compared to conventional Gaussian beam based confocal microscopy. Advantages of this strategy include simplicity of installation and use, linear polarization compatibility, possibility to combine it with other resolution enhancement and superresolution strategies. We demonstrate the resolution enhancement capabilities of Bessel-Gauss beams both theoretically and experimentally on nano-spheres and biological tissue samples without any residual artifacts coming from the Bessel-Gauss beam side lobes with a resolution of 0.39λ. We also show that the resolution enhancement of Bessel-Gauss beams yields a better statistical colocalization analysis with fewer false positive results than when using Gaussian beams. We have also used Bessel-Gauss beams of different orders to further improve the resolution by combining them in SLAM microscopy (Switching LAser Modes : Dehez, Optics Express, 2013) achieving a resolution of 0.2λ.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resolution enhancement in laser scanning microscopy with deconvolution switching laser modes (D-SLAM)

Louis Thibon, Michel Piché, and Yves De Koninck
Opt. Express 26(19) 24881-24903 (2018)

Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging

Harold Dehez, Michel Piché, and Yves De Koninck
Opt. Express 21(13) 15912-15925 (2013)

Superresolution imaging via superoscillation focusing of a radially polarized beam

Yuichi Kozawa, Daichi Matsunaga, and Shunichi Sato
Optica 5(2) 86-92 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
    [Crossref]
  2. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
    [Crossref] [PubMed]
  3. G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
    [Crossref]
  4. F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
    [Crossref]
  5. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
    [Crossref] [PubMed]
  6. G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of feld microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
    [Crossref] [PubMed]
  7. G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
  8. S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
    [Crossref]
  9. W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.
  10. T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
    [Crossref] [PubMed]
  11. M. Zhao, H. Zhang, Y. Li, A. Ashok, R. Liang, W. Zhou, and L. Peng, “Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy,” Biomed. Opt. Express 5(5), 1296–1308 (2014).
    [Crossref] [PubMed]
  12. P. Zhang, P.M. Goodwin, and J. H. Werner, “Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy,” Opt. Express 22(10), 12398–12409 (2014).
    [Crossref] [PubMed]
  13. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
    [Crossref]
  14. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
    [Crossref]
  15. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
    [Crossref]
  16. J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).
  17. H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21, 7128–7141 (2013).
    [Crossref]
  18. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
    [Crossref]
  19. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006), Chap.3.
    [Crossref]
  20. J.D. Jackson, Classical Electrodynamics, (Wiley, 1998).
  21. J.H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44(8), 592–597 (1954).
    [Crossref]
  22. Arcoptix Switzerland, “Radial/aximuthal polarisation converter,” < http://www.arcoptix.com/radial_polarization_converter.htm >.
  23. W.T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50(8), 749–752 (1960).
    [Crossref]
  24. X. Zeng and F. Wu, “Effect of elliptical manufacture error of an axicon on the diffraction-free beam patterns,” Opt. Eng. 47(8), 083401 (2008).
    [Crossref]
  25. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992).
    [Crossref] [PubMed]
  26. L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
    [Crossref] [PubMed]
  27. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref]
  28. K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
    [Crossref] [PubMed]
  29. Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
    [Crossref] [PubMed]
  30. P. Zhang, M.E. Phipps, P M. Goodwin, and J.H. Werner, “Confocal line scanning of a Bessel beam for fast 3D imaging,” Opt. Lett. 39(12), 3682–3685 (2014).
    [Crossref] [PubMed]
  31. S. Heuke, F.B. Legesse, D. Akimov, U. Hubner, J. Dellith, M. Schmitt, and J. Popp, “Bessel beam coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 32(9), 1773–1779 (2015).
    [Crossref]
  32. A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
    [Crossref] [PubMed]
  33. S.W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  34. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  35. M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]

2016 (1)

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (6)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

M. Zhao, H. Zhang, Y. Li, A. Ashok, R. Liang, W. Zhou, and L. Peng, “Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy,” Biomed. Opt. Express 5(5), 1296–1308 (2014).
[Crossref] [PubMed]

P. Zhang, P.M. Goodwin, and J. H. Werner, “Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy,” Opt. Express 22(10), 12398–12409 (2014).
[Crossref] [PubMed]

P. Zhang, M.E. Phipps, P M. Goodwin, and J.H. Werner, “Confocal line scanning of a Bessel beam for fast 3D imaging,” Opt. Lett. 39(12), 3682–3685 (2014).
[Crossref] [PubMed]

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

2013 (4)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
[Crossref] [PubMed]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of feld microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
[Crossref] [PubMed]

H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21, 7128–7141 (2013).
[Crossref]

2012 (1)

2011 (4)

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).

2010 (1)

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

2008 (1)

X. Zeng and F. Wu, “Effect of elliptical manufacture error of an axicon on the diffraction-free beam patterns,” Opt. Eng. 47(8), 083401 (2008).
[Crossref]

2007 (1)

2006 (3)

P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

1994 (1)

1992 (1)

1960 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

1954 (1)

Akimov, D.

Alfano, R.R.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Anbarasanc, P.M.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Antipov, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

April, A.

Arimoto, R.

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Ashok, A.

Back, S.H.

J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).

Bates, M.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Betzig, E.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bianchini, P.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Bonifacino, J.S.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Carbonetto, S.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Castonguay, A.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

Chakraborty, O.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Côté, D.

Cottet, M.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

Daradich, A.

Davidson, M.W.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Koninck, Y.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21, 7128–7141 (2013).
[Crossref]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of feld microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
[Crossref] [PubMed]

P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
[Crossref] [PubMed]

Dehez, H.

Dellith, J.

Dholakia, K.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Diaspro, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Dudley, A.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Dufour, P.

Fahrbach, F.O.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Forbes, A.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Galbraith, C.G.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Galbraith, J.A.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Gao, L.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Gasecka, A.

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Godin, A.G.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Gokulakrishnanb, K.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Gong, Z.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Goodwin, P M.

Goodwin, P.M.

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Hashimoto, N.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006), Chap.3.
[Crossref]

Hell, S.W.

Hes, H.F.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Heuke, S.

Hibi, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Horanai, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Hubner, U.

Ipponjima, S.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Jackson, J.D.

J.D. Jackson, Classical Electrodynamics, (Wiley, 1998).

Ji, Z.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Karimi, E.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Kawata, S.

Kim, D.C.

J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).

Kim, J.

J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).

Korobchevskaya, K.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Kozawa, Y.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
[Crossref]

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Kurihara, M.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Legesse, F.B.

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Li, Y.

Li, Z.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Liang, R.

Lindwasser, O.W.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Lorenzo, L.E.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Mahadevand, G.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

McCarthy, N.

McLeod, J.H.

Milione, G.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Milkie, D.E.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Nemoto, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Nguyen, T.A.

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006), Chap.3.
[Crossref]

Olenych, S.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G.H.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, L.

Peres, C.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Phipps, M.E.

Piché, M.

Planchon, T.A.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Popp, J.

Rajesha, K.B.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Ribeiro-da-Silva, A.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Rohrbach, A.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Rust, M.J.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saloma, C.

Sato, A.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Sato, S.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
[Crossref]

Schmitt, M.

Sheppard, C.J.R.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Shi, K.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Sibbett, W.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Simon, P.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Sougrat, R.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

St-Louis, M.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Tanaka, T.

Thériault, G.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of feld microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
[Crossref] [PubMed]

Veerabagu Sureshb, N.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Wang, F.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Welford, W.T.

Werner, J. H.

Werner, J.H.

Wichmann, J.

Wiseman, P. W.

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Wu, F.

X. Zeng and F. Wu, “Effect of elliptical manufacture error of an axicon on the diffraction-free beam patterns,” Opt. Eng. 47(8), 083401 (2008).
[Crossref]

Xi, P.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Xiao, Y.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Yang, X.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Yokoyama, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6),15947–15954 (2011).
[Crossref]

Yu, W.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Zeng, X.

X. Zeng and F. Wu, “Effect of elliptical manufacture error of an axicon on the diffraction-free beam patterns,” Opt. Eng. 47(8), 083401 (2008).
[Crossref]

Zhang, H.

Zhang, P.

Zhao, M.

Zhou, W.

Zhuang, X.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Front. Cell. Neurosci. (1)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).

J. Neurosci. (1)

L.E. Lorenzo, A.G. Godin, F. Wang, M. St-Louis, S. Carbonetto, P. W. Wiseman, A. Ribeiro-da-Silva, and Y. De Koninck, “Gephyrin clusters are absent from small diameter primary afferent terminals despite the presence of GABAA receptors,” J. Neurosci. 34(24), 8300–8317 (2014).
[Crossref] [PubMed]

J. Opt. (1)

G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, “Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams,” J. Opt. 17(3), 035617 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Microsc. Res. Techniq. (1)

J. Kim, D.C. Kim, and S.H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Techniq. 19(17), 441–446 (2011).

Microscopy (Oxf) (1)

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy (Oxf) 63(1), 23–32 (2014).
[Crossref]

Nat. Methods (2)

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Opt. Commun. (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4–6), 239–245 (2001).
[Crossref]

Opt. Eng. (1)

X. Zeng and F. Wu, “Effect of elliptical manufacture error of an axicon on the diffraction-free beam patterns,” Opt. Eng. 47(8), 083401 (2008).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Opt. Lett. (3)

Proc. R. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253(1274), 358–379 (1959).
[Crossref]

Sci. Rep. (2)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Science (1)

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (4)

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006), Chap.3.
[Crossref]

J.D. Jackson, Classical Electrodynamics, (Wiley, 1998).

Arcoptix Switzerland, “Radial/aximuthal polarisation converter,” < http://www.arcoptix.com/radial_polarization_converter.htm >.

W. Yu, Z. Ji, X. Yang, Z. Gong, Y. Xiao, P. Xi, and K. Shi, “STED imaging by using hollow Bessel beam,” in Frontiers in Optics 2015, paper FTu3D.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Comparison of Bessel-Gauss beams with their Gaussian beam counterparts in the focal plane (z = 0), as calculated by Eqs. (1) and (2). Left: theoretical Gaussian and TE01 beams. Middle: theoretical Bessel-Gauss beams. Right: Horizontal profiles with FWHM of the two beams. The coverslip refractive index is n2 = 1.5 and the mounting medium refractive index is n1 = 1.47. Numerical aperture of the focussing objective: NA = 1.2. Wavelength: λ = 532 nm
Fig. 2
Fig. 2 Simplified schematic representation of the confocal microscope that uses Bessel-Gauss beams. The zoomed part depicts the beam transformation by the axicon. In the zoomed part w represents the Gaussian beam waist before entering the axicon and β is the angle of the cone formed by the rays refracted by the axicon. The laser used in our confocal microscope is a Compass 215M from Coherent Inc. (with a wavelength of 532 nm) delivering a maximum output power of 40 mW which is largely sufficient for all of the measurements reported here.
Fig. 3
Fig. 3 Calculations and experimental measurements of the vertically and azimuthally polarized Bessel-Gauss beams produced at the focus of the objective. The top row shows the vertically polarized Bessel-Gauss beam and the bottom row the azimuthally polarized Bessel-Gauss beam. The left column represents the simulated results, the middle one the experimental PSF (Point Spread Function) of the beams taken with 100-nm diameter nano-spheres (fluosphere carboxylate-modified microspheres, orange fluorescence 540/560 from Invitrogen molecular probes) and the right column compares the theoretical and experimental profiles and the corresponding FWHMs.
Fig. 4
Fig. 4 A: Images of 100-nm diameter fluorescent nano-spheres (same as Fig. 3) observed with a confocal microscope having a pinhole of 15 μm. The nano-spheres are observed with a Gaussian beam of vertical polarization (A1), Bessel-Gauss beam of vertical polarization (A2), TE01 beam of azimuthal polarization (A3) and Bessel-Gauss beam of azimuthal polarization (A4). B: Focal spot of the Bessel-Gauss beam of vertical polarization for different pinhole diameters obtained using 100-nm fluorescent nano-spheres: 25 μm (B1), 15 μm (B2) and 10 μm (B3). Excitation wavelength: 532 nm. Scale bar: 500 nm
Fig. 5
Fig. 5 Confocal image of a single and an average of ≈ 30 fluorescent nano-spheres for both Gaussian and Bessel-Gauss beams. Pinhole diameter: 10 μm. The right panel displays the normalized profiles of the nano-spheres along the horizontal axis (colored lines on the images). The traces with full lines are for the 30 nano-sphere average PSFs and the crosses are pixel values for the single nano-sphere measurements.
Fig. 6
Fig. 6 Axial view of the PSF measured with nano-spheres. A) PSF of the vertically polarized Gaussian beam. B) PSF of the vertically polarized Bessel-Gauss beam. The left image displays an axial view of the PSF. The right curve is an intensity profile along the red dashed line of the axial PSF with the corresponding FWHM. The black dots on the curve represent the pixel data before interpolation. The red curves represent a plot of the interpolated values. Pixel size along the x axis: 24 nm. Pixel size along the z axis: 250 nm.
Fig. 7
Fig. 7 Confocal images of a sample of 100-nm fluorescent nano-spheres observed with a Gaussian beam (left) and with a Bessel-Gauss beam (right). Center: normalized profiles along the coloured lines in the two images. The black line in the central panel corresponds to the resolution measured between the two maxima. Pinhole diameter: 10 μm. Scale bar: 510 nm. Images filtered with a Gaussian filter having a FWHM of one pixel.
Fig. 8
Fig. 8 Confocal images of microtubules stained by immunohistochemistry (monoclonal anti α-tubulin primary antibody - revealed by a donkey anti-mouse Rhodamine RedX-labeled secondary antibody) observed with a Gaussian beam (left) and with a Bessel-Gauss beam (right). Center: normalized integrated profiles (5-pixel width line) along the coloured lines in the two images. The black line in the central panel corresponds to the resolution measured between the two maxima. Pinhole diameter: 10 μm. Scale bar: 510 nm. Images filtered with a Gaussian filter having a FWHM of one pixel.
Fig. 9
Fig. 9 Gephyrin immunodetected by a monoclonal mAb7a Oyster 550 coupled antibody, excitation maximum at 551 nm. Left: images obtained with a Gaussian beam. Center: normalized profiles along the coloured lines on the images. The black dotted line in the central panel corresponds to the resolution measured between the two maxima. Right: images obtained with a Bessel-Gauss beam. Pinhole diameter: 10 μm. Scale bar: 1000 nm. Images filtered with a Gaussian filter having a FWHM of one pixel.
Fig. 10
Fig. 10 A: Two images of the same field taken with Gaussian and Bessel-Gauss beams with magnified sub-regions and their associated binarized masks (the mask creation is a step of the colocalization analysis [26]). The image contrast has been adjusted for better visibility but raw data were used for the analysis. B and C: comparison of the index obtained from Gaussian and Bessel-Gauss acquisitions with the same field. A lower index corresponds to a lower colocalization. The indexes are compared using a paired t-test.
Fig. 11
Fig. 11 Application of SLAM and B-SLAM to nano-spheres with Gaussian beams (top right image with g = 0.9) and Bessel-Gauss beams (bottom right image with g = 1.0). Left: confocal images. Center: normalized profiles along the coloured lines of the images. The black line in the central panel corresponds to the resolution measured between the two maxima. Pinhole diameter: 10 μm. Scale bar: 300 nm.
Fig. 12
Fig. 12 SLAM method applied to microtubules with Gaussian (top images) and Bessel-Gauss beams (bottom images). Left: confocal images. Right: SLAM (with g = 0.8) and B-SLAM (with g = 1.0) images. Center: normalized profile traces along the coloured lines in the images. The profiles are integrated along 10 pixels in width. Pinhole diameter: 10 μm. Scale bar: 1 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E x ( ρ , φ , z ) = E 0 2 n 0 θ max cos 1 2 θ l 0 ( θ , φ ) exp ( i k z cos θ ) sin θ × [ ( 1 + cos θ ) J 0 ( k ρ sin θ ) + ( 1 cos θ ) J 2 ( k ρ sin θ ) cos ( 2 φ ) ] d θ , E y ( ρ , φ , z ) = E 0 2 n 0 θ max cos 1 2 θ l 0 ( θ , φ ) exp ( i k z cos θ ) sin θ × ( 1 cos θ ) J 2 ( k ρ sin θ ) sin ( 2 φ ) d θ , E z ( ρ , φ , z ) = i E 0 n 0 θ max cos 1 2 θ l 0 ( θ , φ ) exp ( i k z cos θ ) sin θ J 1 ( k ρ sin θ ) cos ( φ ) d θ ,
E x ( ρ , φ , z ) = i E 0 n 0 θ max cos 1 2 θ l 0 ( θ , φ ) exp ( i k z cos θ ) sin 2 θ J 1 ( k ρ sin θ ) sin ( φ ) d θ , E y ( ρ , φ , z ) = i E 0 n 0 θ max cos 1 2 θ l 0 ( θ , φ ) exp ( i k z cos θ ) sin 2 θ J 1 ( k ρ sin θ ) cos ( φ ) d θ , E z ( ρ , φ , z ) = 0 .
E x ( ρ , φ , z ) = E 0 2 n cos 1 2 θ 0 exp ( i k z cos θ 0 ) sin θ 0 × [ ( 1 + cos θ 0 ) J 0 ( k ρ sin θ 0 ) + ( 1 cos θ 0 ) J 2 ( k ρ sin θ 0 ) cos ( 2 φ ) ] , E y ( ρ , φ , z ) = E 0 2 n cos 1 2 θ 0 exp ( i k z cos θ 0 ) sin θ 0 × ( 1 cos θ 0 ) J 2 ( k ρ sin θ 0 ) sin ( 2 φ ) , E z ( ρ , φ , z ) = i E 0 n cos 1 2 θ 0 exp ( i k z cos θ 0 ) sin θ 0 J 1 ( k ρ sin θ 0 ) cos ( φ ) ,
E x ( ρ , φ , z ) f ( z ) ( 1 + cos θ 0 ) J 0 ( k ρ sin θ 0 ) , E y ( ρ , φ , z ) 0 , E z ( ρ , φ , z ) 2 i f ( z ) J 1 ( k ρ sin θ 0 ) cos ( φ ) ,
E ρ ( ρ , φ , z ) = 0 , E φ ( ρ , φ , z ) = i E 0 n cos 1 2 ( θ 0 ) exp ( i k z cos θ 0 ) sin 2 ( θ 0 ) J 1 ( k ρ sin θ 0 ) , E z ( ρ , φ , z ) = 0 .
I SLAM = I bright g × I donut

Metrics