Abstract

We propose a see-through near-eye display, which is dedicated to the visually impaired users who suffer from refractive anomalies. Our solution is characterized by a pair of corrective lenses coated with multiplexed volume holograms. Its key performance including diffraction efficiency, field of view, modulation transfer function, and distortion has been studied.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of see-through near-eye display for presbyopia

Yishi Wu, Chao Ping Chen, Lei Zhou, Yang Li, Bing Yu, and Huayi Jin
Opt. Express 25(8) 8937-8949 (2017)

Design of retinal projection displays enabling vision correction

Chao Ping Chen, Lei Zhou, Jiahao Ge, Yuhang Wu, Lantian Mi, Yishi Wu, Bing Yu, and Yang Li
Opt. Express 25(23) 28223-28235 (2017)

Design of retinal-projection-based near-eye display with contact lens

Yuhang Wu, Chao Ping Chen, Lantian Mi, Wenbo Zhang, Jingxin Zhao, Yifan Lu, Weiqian Guo, Bing Yu, Yang Li, and Nizamuddin Maitlo
Opt. Express 26(9) 11553-11567 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
    [Crossref]
  2. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” SID Symposium (2004), pp. 310–313.
    [Crossref]
  3. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  4. Z. Wu, J. Liu, and Y. Wang, “A high-efficiency holographic waveguide display system with a prism in-coupler,” J. Soc. Inf. Disp. 21(12), 524–528 (2013).
    [Crossref]
  5. C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
    [Crossref]
  6. B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
    [Crossref] [PubMed]
  7. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
    [Crossref] [PubMed]
  8. K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
    [Crossref]
  9. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  10. A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
    [Crossref]
  11. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  12. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [Crossref] [PubMed]
  13. H. Hua, “Past and future of wearable augmented reality displays and their applications,” Proc. SPIE 9186, 91860O (2014).
  14. D. Cheng, Y. Wang, C. Xu, W. Song, and G. Jin, “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics,” Opt. Express 22(17), 20705–20719 (2014).
    [Crossref] [PubMed]
  15. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  16. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  17. B. Kress, V. Raulot, and M. Grossman, “Exit pupil expander for wearable see-through displays,” Proc. SPIE 8368, 83680D (2012).
    [Crossref]
  18. A. G. Taylor, Develop Microsoft HoloLens Apps Now (Apress, 2016).
  19. R. B. Sprague, “Method and apparatus to process display and non-display information,” US Patent 8,520,309 B2 (2008).
  20. M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Edition (Wiley, 2008).
  21. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).
  22. R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1-4), 1–5 (1993).
    [Crossref]
  23. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 2494–2502 (1994).
    [Crossref]
  24. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  25. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [Crossref] [PubMed]
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  27. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).

2016 (1)

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

2013 (2)

Z. Wu, J. Liu, and Y. Wang, “A high-efficiency holographic waveguide display system with a prism in-coupler,” J. Soc. Inf. Disp. 21(12), 524–528 (2013).
[Crossref]

Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
[Crossref] [PubMed]

2012 (2)

2009 (3)

A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2008 (1)

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2001 (2)

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

1997 (1)

1995 (1)

1994 (1)

1993 (1)

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1-4), 1–5 (1993).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
[Crossref] [PubMed]

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” SID Symposium (2004), pp. 310–313.
[Crossref]

Azuma, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Baillot, Y.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Behringer, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Bräuer, R.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1-4), 1–5 (1993).
[Crossref]

Bryngdahl, O.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1-4), 1–5 (1993).
[Crossref]

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Cameron, A.

A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

Chen, C. P.

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

Chen, H.-S.

Chen, P.-J.

Chen, Y.

Cheng, D.

Feiner, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Fricke, T. R.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Friesem, A. A.

Grossman, M.

B. Kress, V. Raulot, and M. Grossman, “Exit pupil expander for wearable see-through displays,” Proc. SPIE 8368, 83680D (2012).
[Crossref]

Han, J.

Holden, B. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Hu, Y.

Hua, H.

Jin, G.

Jong, M.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Julier, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Kim, J. C.

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

Kiyokawa, K.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kress, B.

B. Kress, V. Raulot, and M. Grossman, “Exit pupil expander for wearable see-through displays,” Proc. SPIE 8368, 83680D (2012).
[Crossref]

Kurata, Y.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Li, L.

Lin, Y.-H.

Liu, J.

Liu, Y.

MacIntyre, B.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Naduvilath, T. J.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Naidoo, K. S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Noponen, E.

Ohno, H.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

Preman, S. P.

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

Raulot, V.

B. Kress, V. Raulot, and M. Grossman, “Exit pupil expander for wearable see-through displays,” Proc. SPIE 8368, 83680D (2012).
[Crossref]

Reinhorn, S.

Resnikoff, S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Sankaridurg, P.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Shi, R.

Song, W.

Talha, M. M.

Turunen, J.

Wang, Q.

Wang, Y.

Wang, Y.-J.

Wilson, D. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Wong, T. Y.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Wu, Z.

Xie, J.

Xu, C.

Yao, X.

Yoon, T.-H.

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Zhao, H.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

C. P. Chen, S. P. Preman, T.-H. Yoon, and J. C. Kim, “Dual-mode operation of dual-frequency liquid crystal cell by horizontal switching,” Appl. Phys. Lett. 92(12), 123505 (2008).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Comput. Graph. (1)

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereovision system,” Comput. Graph. 25(5), 765–779 (2001).
[Crossref]

IEEE Comput. Graph. (1)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. 21(6), 34–47 (2001).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (2)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Z. Wu, J. Liu, and Y. Wang, “A high-efficiency holographic waveguide display system with a prism in-coupler,” J. Soc. Inf. Disp. 21(12), 524–528 (2013).
[Crossref]

Ophthalmology (1)

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100(1-4), 1–5 (1993).
[Crossref]

Opt. Express (3)

Proc. SPIE (3)

H. Hua, “Past and future of wearable augmented reality displays and their applications,” Proc. SPIE 9186, 91860O (2014).

A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

B. Kress, V. Raulot, and M. Grossman, “Exit pupil expander for wearable see-through displays,” Proc. SPIE 8368, 83680D (2012).
[Crossref]

Other (6)

A. G. Taylor, Develop Microsoft HoloLens Apps Now (Apress, 2016).

R. B. Sprague, “Method and apparatus to process display and non-display information,” US Patent 8,520,309 B2 (2008).

M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Edition (Wiley, 2008).

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” SID Symposium (2004), pp. 310–313.
[Crossref]

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic drawing of the proposed monocular see-through NED. θ is an angle intersected by the central or optical axis of volume hologram and that of the projection lens, s2 is the distance between the projection lens and corrective lens, and s3 is the distance between the corrective lens and eye.
Fig. 2
Fig. 2 Schematic drawing of the pico projector. The pico projector consists of a micro-display and a 4-element projection lens.
Fig. 3
Fig. 3 Unfolded optical path diagrams for the (a) real and (b) virtual images. The 4-element projection lens is briefly described as a single lens for the sake of clarity.
Fig. 4
Fig. 4 Image distance versus the diopter of projection lens. It can be seen that when Pp approaches 278.92 m−1, at which the focal length of projection lens is close to s1, the image distance will be the infinity.
Fig. 5
Fig. 5 Lateral magnification versus the diopter of projection lens. If the target value of image distance S″ is set as 3 m, this will roughly correspond to Pp = 278.35 m−1 and m = 604.32.
Fig. 6
Fig. 6 2D view of the proposed NED. The numbering of all surfaces is labelled either as their original names or as numbers.
Fig. 7
Fig. 7 Calculated DE with respect to wavelengths. For wavelength multiplexing, the wavelength bandwidths of R/G/B colors for individual DE>10% are 13 nm (637~649 nm), 12 nm (536~547 nm), and 14 nm (462~475 nm), respectively.
Fig. 8
Fig. 8 Calculated DE with respect to incident angles. For angular multiplexing of green color, the angular bandwidth for overall DE>10% is 33° (36~68°).
Fig. 9
Fig. 9 Calculated MTFs of (a) real and (b) virtual images. For real images, MTFs for all angles are above 0.4 at 150 cycles/mm. For virtual images, MTFs for all angles are above 0.4 at 6 cycles/mm.
Fig. 10
Fig. 10 Calculated distortion grids of (a) real and (b) virtual images. For real images, distortion is less than 0.15%. For virtual images, distortion is less than 0.63%.
Fig. 11
Fig. 11 (a) Original, (b) real, and (c) virtual images. By comparing the original and simulated images, it can be seen that the distortion is almost unnoticeable, while the brightness is reduced and blurring is more apparent for the virtual image, which agrees with the foregoing results.

Tables (5)

Tables Icon

Table 1 Parameters used for the corrective lens

Tables Icon

Table 2 Optimized parameters for the proposed NED

Tables Icon

Table 3 Parameters for aspherical surfaces

Tables Icon

Table 4 Parameters of volume holograms used for wavelength multiplexing

Tables Icon

Table 5 Parameters of volume holograms used for angular multiplexing

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

  P c = 1 f c = n c n air n air ( 1 R 1 1 R 2 )
 s'= s 1 P p s 1 1
s '' = ( s 1 + P p s 1 s 2 s 2 ) R 2 2 s 1 +2 P p s 1 s 2 2 s 2 P p s 1 R 2 + R 2
m= R 2 2 s 1 +2 P p s 1 s 2 2 s 2 P p s 1 R 2 + R 2
sin θ B = nλ 2Λ
Λ= λ c 2sin( θ r θ o 2 )
sin θ B = nλ λ c sin( θ r θ o 2 )
η= η 1 + η 2 + η 3 η 1 η 2 η 1 η 3 η 2 η 3 + η 1 η 2 η 3
FOV=2arctan( d m 2 f e )

Metrics