Abstract

We designed a cut-wire-pair metasurface that works as a transparent terahertz half-wave plate, by matching the electric and magnetic resonances of the structure. Due to the impedance matching nature of the resonances, a large transmission phase shift between the orthogonal polarizations was achieved, while permitting a high transmission. The electric and magnetic responses of the proposed structure were confirmed by evaluating the electric admittance and magnetic impedance. The structure was fabricated on a flexible film and its helicity-conversion function in the terahertz frequency range was experimentally demonstrated. The thickness of the device is less than 1/10 of the working vacuum wavelength, and a high amplitude helicity conversion rate over 80 % was achieved. Finally, using simulations, we demonstrate the feasibility of the gradually rotating cut-wire-pair array in terahertz wave-front control.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric-resonator metasurfaces for broadband terahertz quarter- and half-wave mirrors

Wendy S. L. Lee, Rajour T. Ako, Mei Xian Low, Madhu Bhaskaran, Sharath Sriram, Christophe Fumeaux, and Withawat Withayachumnankul
Opt. Express 26(11) 14392-14406 (2018)

Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials

Rui Xia, Xufeng Jing, Xincui Gui, Ying Tian, and Zhi Hong
Opt. Mater. Express 7(3) 977-988 (2017)

Three-dimensional cut wire pair behavior and controllable bianisotropic response in vertically oriented meta-atoms

D. Bruce Burckel, Bryan M. Adomanis, Michael B. Sinclair, and Salvatore Campione
Opt. Express 25(25) 32198-32205 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  2. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
    [Crossref]
  3. R. Fukasawa, “Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis,” IEEE Trans. THz Sci. Technol. 5, 1121–1127 (2015).
  4. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [Crossref] [PubMed]
  5. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39, 146–149 (2014).
    [Crossref]
  6. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
    [Crossref]
  7. H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
    [Crossref]
  8. Y. He and G. V. Eleftheriades, “Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets,” Opt. Express 21, 24468–24474 (2013).
    [Crossref] [PubMed]
  9. P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22, 32371–32383 (2014).
    [Crossref]
  10. D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
    [Crossref] [PubMed]
  11. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
    [Crossref]
  12. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
    [Crossref]
  13. X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
    [Crossref]
  14. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  15. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [Crossref] [PubMed]
  16. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  17. V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15, 16651–16656 (2007).
    [Crossref] [PubMed]
  18. V. D. Lam, J. B. Kim, N. T. Tung, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the distance between cut-wire-pair layers on resonance frequencies,” Opt. Express 16, 5934–5941 (2008).
    [Crossref] [PubMed]
  19. T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).
  20. D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
    [Crossref]
  21. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
    [Crossref]
  22. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93, 051105 (2008).
    [Crossref]
  23. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
    [Crossref]
  24. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
    [Crossref]
  25. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
    [Crossref]
  26. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref] [PubMed]
  27. H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
    [Crossref] [PubMed]
  28. Y. He and G. V. Eleftheriades, “Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts,” EPJ Appl. Metamat. 1, 8 (2014).
    [Crossref]
  29. W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
    [Crossref]

2016 (4)

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

H.-X. Xu, G.-M. Wang, T. Cai, J. Xiao, and Y.-Q. Zhuang, “Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24, 27836–27848 (2016).
[Crossref] [PubMed]

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

2015 (6)

D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

R. Fukasawa, “Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis,” IEEE Trans. THz Sci. Technol. 5, 1121–1127 (2015).

2014 (4)

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39, 146–149 (2014).
[Crossref]

P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22, 32371–32383 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Y. He and G. V. Eleftheriades, “Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts,” EPJ Appl. Metamat. 1, 8 (2014).
[Crossref]

2013 (3)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
[Crossref]

Y. He and G. V. Eleftheriades, “Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets,” Opt. Express 21, 24468–24474 (2013).
[Crossref] [PubMed]

2011 (3)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).

2010 (1)

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
[Crossref] [PubMed]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

2005 (2)

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Ashida, M.

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Cai, T.

Cai, W.

Chatterjee, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Chen, H.-T.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Chettiar, U. K.

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Dai, S.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Ding, F.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Dolling, G.

Drachev, V. P.

Eleftheriades, G. V.

Y. He and G. V. Eleftheriades, “Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts,” EPJ Appl. Metamat. 1, 8 (2014).
[Crossref]

Y. He and G. V. Eleftheriades, “Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets,” Opt. Express 21, 24468–24474 (2013).
[Crossref] [PubMed]

Enkrich, C.

Fischer, B. M.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Fukasawa, R.

R. Fukasawa, “Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis,” IEEE Trans. THz Sci. Technol. 5, 1121–1127 (2015).

Gallot, G.

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Gong, Y.

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Grischkowsky, D.

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93, 051105 (2008).
[Crossref]

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Gu, Y.

Han, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Hangyo, M.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

He, Y.

Y. He and G. V. Eleftheriades, “Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts,” EPJ Appl. Metamat. 1, 8 (2014).
[Crossref]

Y. He and G. V. Eleftheriades, “Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets,” Opt. Express 21, 24468–24474 (2013).
[Crossref] [PubMed]

Hieu, N. V.

D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
[Crossref]

Hong, M.

Jansen, C.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Jiang, H.

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

Jiang, Y.

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

Jung, T.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Kim, J. B.

Koch, M.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Kraft, D.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Lam, V. D.

Laman, N.

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93, 051105 (2008).
[Crossref]

Lee, S. J.

Lee, Y. P.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Lievens, P.

T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).

Linden, S.

Liu, B.

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

Masson, J.-B.

Meng, Y.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

Minowa, Y.

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Morikawa, O.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Mukai, N.

Nagai, M.

Nagashima, T.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

Nashima, S.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
[Crossref]

Nguyen, T. T.

T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).

Ohtake, H.

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Qiu, C.-W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

D. Wang, Y. Gu, Y. Gong, C.-W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23, 11114–11122 (2015).
[Crossref] [PubMed]

Quema, A.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

Reuter, M.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Rhee, J. Y.

Rockstuhl, C.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Sarychev, A. K.

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
[Crossref]

Sieber, P. E.

Singh, R.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Song, J.

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

Soukoulis, C. M.

Sumikura, H.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

Takayanagi, J.

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
[Crossref]

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

Taylor, A. J.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Tian, J.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

Tian, Z.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Tung, N. T.

D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
[Crossref]

V. D. Lam, J. B. Kim, N. T. Tung, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the distance between cut-wire-pair layers on resonance frequencies,” Opt. Express 16, 5934–5941 (2008).
[Crossref] [PubMed]

Viet, D. T.

D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
[Crossref]

Vu, D. L.

T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).

Wang, D.

Wang, G.-M.

Wang, L.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Wegener, M.

Wen, W.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

Werner, D. H.

Wietzke, S.

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Wu, X.

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

Xiao, J.

Xu, H.-X.

Xu, N.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Yu, N.

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Yuan, H.-K.

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Zhang, L.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

Zhang, X.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

Zhao, W.

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Zhou, J. F.

Zhuang, Y.-Q.

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27, 1195–1200 (2015).
[Crossref]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Computational studies of a cut-wire pair and combined metamaterials,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 033001 (2011).

Appl. Phys. Express (1)

D. T. Viet, N. V. Hieu, V. D. Lam, and N. T. Tung, “Isotropic metamaterial absorber using cut-wire-pair structures,” Appl. Phys. Express 8, 032001 (2015).
[Crossref]

Appl. Phys. Lett. (4)

X. Wu, Y. Meng, L. Wang, J. Tian, S. Dai, and W. Wen, “Anisotropic metasurface with near-unity circular polarization conversion,” Appl. Phys. Lett. 108, 183502 (2016).
[Crossref]

N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett. 93, 051105 (2008).
[Crossref]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96, 071114 (2010).
[Crossref]

W. Zhao, H. Jiang, B. Liu, J. Song, and Y. Jiang, “High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,” Appl. Phys. Lett. 108, 181102 (2016).
[Crossref]

EPJ Appl. Metamat. (1)

Y. He and G. V. Eleftheriades, “Rotated infrared antenna transmitarray for the manipulation of circularly polarized wavefronts,” EPJ Appl. Metamat. 1, 8 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

R. Fukasawa, “Terahertz imaging: widespread industrial application in non-destructive inspection and chemical analysis,” IEEE Trans. THz Sci. Technol. 5, 1121–1127 (2015).

J. Appl. Phys. (1)

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100, 033105 (2006).
[Crossref]

J. Mol. Struct. (1)

S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011).
[Crossref]

Laser Photon. Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8, 626–632 (2014).
[Crossref]

Nat. Nanotech. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotech. 10, 308–312 (2015).
[Crossref]

Nat. Photon. (1)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

Rep. Prog. Phys. (1)

H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79, 076401 (2016).
[Crossref]

Other (1)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Symmetric electric mode. (b) Anti-symmetric magnetic mode of the current on a metallic cut-wire pair.
Fig. 2
Fig. 2 (a) Top view of the simulation model. (b) Side view of the model. (c) Amplitude and (d) phase transmission spectra of silver cut-wire pairs on a COC substrate with a = 585 µm, l = 215 µm, w = 169 µm, and t = 40 µm for x and y polarized normally incident waves (lossless cases are also shown for comparison). Macroscopic electric admittance and magnetic impedance of the silver cut-wire pairs on a COC substrate for (e) x-polarized and (f) y-polarized waves.
Fig. 3
Fig. 3 (a) Photograph of a sample. Microphotographs from (b) top and (c) bottom views of the sample. (d) Measured transmission spectra for the sample from the bottom side to the top side. (e) Simulated transmission spectra for 1.4 µm-thick aluminum cut-wire pairs on a 40 µm-thick COC substrate with a = 585 µm, l = 217 µm, and w = 174 µm.
Fig. 4
Fig. 4 (a) The top view of simulation model. (b) Ey at 0.504 THz on Xz plane.

Tables (1)

Tables Icon

Table 1 Calculated eigenfrequencies for cut-wire pairs on 40 µm-thick cyclo olefin copolymer substrate with a = 585 µm, l = 215 µm, and w = 169 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y e Y 0 = 2 1 r t 1 + r + t , Z m Z 0 = 2 1 + r t 1 r + t .

Metrics