Abstract

Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient machining of non-circular freeform optics using fast tool servo assisted ultra-precision turning

Zexiao Li, Fengzhou Fang, Xiaodong Zhang, Xianlei Liu, and Huimin Gao
Opt. Express 25(21) 25243-25256 (2017)

Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization

Zhiwei Zhu, Xiaoqin Zhou, Dan Luo, and Qiang Liu
Opt. Express 21(23) 28469-28482 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).
  2. L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
    [Crossref]
  3. X. Hu, Y. Li, F. Fang, X. Li, J. Li, Y. Chen, X. Zhang, L. Chai, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of terahertz radiation from GaP emitters by subwavelength antireflective micropyramid structures,” Opt. Lett. 38(12), 2053–2055 (2013).
    [Crossref] [PubMed]
  4. Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
    [Crossref]
  5. P. N. Blake and R. O. Scattergood, “Ductile-regime machining of germanium and silicon,” J. Am. Ceram. Soc. 73(4), 949–957 (1990).
    [Crossref]
  6. J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).
  7. F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
    [Crossref]
  8. F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
    [Crossref]
  9. H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).
  10. M. Lai, X. Zhang, and F. Fang, “Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation,” Nanoscale Res. Lett. 8(1), 353 (2013).
    [Crossref] [PubMed]
  11. X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).
  12. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
    [Crossref] [PubMed]
  13. A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
    [Crossref] [PubMed]
  14. J. Zhu, T. Yang, and G. Jin, “Design method of surface contour for a freeform lens with wide linear field-of-view,” Opt. Express 21(22), 26080–26092 (2013).
    [Crossref] [PubMed]
  15. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010).
    [Crossref] [PubMed]
  16. M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
    [Crossref]
  17. B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
    [Crossref]
  18. Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
    [Crossref] [PubMed]
  19. Z. Zhu and S. To, “Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics,” Opt. Express 23(16), 20234–20248 (2015).
    [Crossref] [PubMed]
  20. M. L. Barkman, B. S. Dutterer, M. A. Davies, and T. J. Suleski, “Free-form machining for micro-imaging systems,” in MOEMS-MEMS 2008 Micro and Nanofabrication (ISOP, 2008), paper 68830G.
  21. T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
    [Crossref]
  22. F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
    [Crossref]
  23. S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).
  24. Y. Su, X. Chen, X. Guo, G. Rui, X. Liu, F. Zhang, C. Yang, Y. Xiao, and Z. Xu, “New fabrication technology in single point diamond turning for IR aspheric optical parts,” in 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014) (ISOP, 2014), paper 92811L.
  25. T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
    [Crossref]
  26. J.-D. Kim and D.-S. Kim, “Waviness compensation of precision machining by piezo-electric micro cutting device,” Int. J. Mach. Tools Manuf. 38(10-11), 1305–1322 (1998).
    [Crossref]
  27. K. Garrard, T. Bruegge, J. Hoffman, T. A. Dow, and A. Sohn, “Design tools for freeform optics,” in Optics & Photonics 2005 (ISOP, 2005), pp. 58740A–58711.
  28. J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
    [Crossref]
  29. G. E. Davis, G. L. Herrit, and A. R. Hedges, “Diamond turning considerations in the manufacture of beam shaping optics,” in SPIE Optical Engineering + Applications (ISOP, 2011), paper 81300K.
  30. M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf.in press.
  31. F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
    [Crossref] [PubMed]
  32. D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
    [Crossref]

2015 (1)

2014 (3)

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Opt. Express 22(11), 13155–13163 (2014).
[Crossref] [PubMed]

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

2013 (5)

2012 (3)

L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
[Crossref] [PubMed]

M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
[Crossref]

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

2010 (1)

2008 (1)

2007 (4)

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
[Crossref]

H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).

2005 (1)

F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
[Crossref]

2004 (1)

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

2002 (1)

F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
[Crossref]

1999 (1)

J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
[Crossref]

1998 (1)

J.-D. Kim and D.-S. Kim, “Waviness compensation of precision machining by piezo-electric micro cutting device,” Int. J. Mach. Tools Manuf. 38(10-11), 1305–1322 (1998).
[Crossref]

1996 (1)

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

1991 (1)

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[Crossref]

1990 (1)

P. N. Blake and R. O. Scattergood, “Ductile-regime machining of germanium and silicon,” J. Am. Ceram. Soc. 73(4), 949–957 (1990).
[Crossref]

Anthony, L.

H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).

Arif, M.

M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
[Crossref]

Assanto, G.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Bauer, A.

Blake, P. N.

P. N. Blake and R. O. Scattergood, “Ductile-regime machining of germanium and silicon,” J. Am. Ceram. Soc. 73(4), 949–957 (1990).
[Crossref]

Cencelli, V.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Chai, L.

Chen, Y.

Colace, L.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Cozza, S.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Cuttino, J. F.

J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
[Crossref]

Davies, M.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Davies, M. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

DeNotaristefani, F.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Dow, T. A.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[Crossref]

Dutterer, B.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Dutterer, B. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Evans, C.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Falter, P. J.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[Crossref]

Fang, F.

M. Lai, X. Zhang, and F. Fang, “Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation,” Nanoscale Res. Lett. 8(1), 353 (2013).
[Crossref] [PubMed]

X. Hu, Y. Li, F. Fang, X. Li, J. Li, Y. Chen, X. Zhang, L. Chai, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of terahertz radiation from GaP emitters by subwavelength antireflective micropyramid structures,” Opt. Lett. 38(12), 2053–2055 (2013).
[Crossref] [PubMed]

Fang, F. Z.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[Crossref] [PubMed]

F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
[Crossref]

F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
[Crossref]

F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
[Crossref]

Fedotov, A. B.

Fujii, S.

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

Gan, S. W.

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Gong, X.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Harriman, T.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Harriman, T. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Hildebrand, D. S.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Hong, G. S.

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Hu, X.

Hu, X. T.

Ikeda, M.

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

Jiang, X.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).

Jin, G.

Kim, D.-S.

J.-D. Kim and D.-S. Kim, “Waviness compensation of precision machining by piezo-electric micro cutting device,” Int. J. Mach. Tools Manuf. 38(10-11), 1305–1322 (1998).
[Crossref]

Kim, J.-D.

J.-D. Kim and D.-S. Kim, “Waviness compensation of precision machining by piezo-electric micro cutting device,” Int. J. Mach. Tools Manuf. 38(10-11), 1305–1322 (1998).
[Crossref]

Kubo, A.

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

Lai, M.

M. Lai, X. Zhang, and F. Fang, “Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation,” Nanoscale Res. Lett. 8(1), 353 (2013).
[Crossref] [PubMed]

Li, J.

Li, L.

Li, X.

Li, Y.

Lineberger, J. L.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Liu, Q.

Liu, Y.

F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
[Crossref]

Lucca, D.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Lucca, D. A.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Luo, D.

Maekawa, K.

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

Makino, E.

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

Masini, G.

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Miller, A. C.

J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
[Crossref]

Miller, M. H.

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[Crossref]

Mukaida, M.

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf.in press.

Passlack, M.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Qi, Y.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Rahman, M.

M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
[Crossref]

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Rolland, J. P.

San, W. Y.

M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
[Crossref]

San Wong, Y.

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Scattergood, R. O.

P. N. Blake and R. O. Scattergood, “Ductile-regime machining of germanium and silicon,” J. Am. Ceram. Soc. 73(4), 949–957 (1990).
[Crossref]

Schinstock, D. E.

J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
[Crossref]

Scott, P.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).

Shibata, T.

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

Shimada, S.

H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).

Shojaee, S.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Smilie, P. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Suleski, T.

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Suleski, T. J.

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

Tamaki, J. i.

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

Tanaka, H.

H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).

To, S.

van Dal, M. J.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Vellianitis, G.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Venkatesh, V.

F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
[Crossref]

Wang, C.

Weckenmann, A.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Whitehouse, D.

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).

Wu, H.

F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
[Crossref]

F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
[Crossref]

Yan, J.

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf.in press.

Yang, T.

Yao, J.

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Yeo, Y.-C.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Yi, A. Y.

Yu, D. P.

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

Zhang, G.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
[Crossref]

Zhang, X.

M. Lai, X. Zhang, and F. Fang, “Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation,” Nanoscale Res. Lett. 8(1), 353 (2013).
[Crossref] [PubMed]

X. Hu, Y. Li, F. Fang, X. Li, J. Li, Y. Chen, X. Zhang, L. Chai, C. Wang, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of terahertz radiation from GaP emitters by subwavelength antireflective micropyramid structures,” Opt. Lett. 38(12), 2053–2055 (2013).
[Crossref] [PubMed]

Zhang, X. D.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express 16(10), 7323–7329 (2008).
[Crossref] [PubMed]

Zheltikov, A. M.

Zhou, W.

F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
[Crossref]

Zhou, X.

Zhu, J.

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Colace, G. Masini, S. Cozza, G. Assanto, F. DeNotaristefani, and V. Cencelli, “Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics,” Appl. Phys. Lett. 90(1), 011103 (2007).
[Crossref]

Cirp. Ann-manuf. Techn. (3)

H. Tanaka, S. Shimada, and L. Anthony, “Requirements for ductile-mode machining based on deformation analysis of mono-crystalline silicon by molecular dynamics simulation,” Cirp. Ann-manuf. Techn. 56(1), 53–56 (2007).

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

X. Jiang, P. Scott, and D. Whitehouse, “Freeform surface characterisation-a fresh strategy,” Cirp. Ann-manuf. Techn. 56(1), 553–556 (2007).

IEEE/ASME Trans. Mechatron. (1)

J. F. Cuttino, A. C. Miller, and D. E. Schinstock, “Performance optimization of a fast tool servo for single-point diamond turning machines,” IEEE/ASME Trans. Mechatron. 4(2), 169–179 (1999).
[Crossref]

Int. J. Adv. Manuf. Technol. (2)

D. P. Yu, S. W. Gan, Y. San Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9–12), 1137–1152 (2012).
[Crossref]

F. Z. Fang, V. Venkatesh, and G. Zhang, “Diamond turning of soft semiconductors to obtain nanometric mirror surfaces,” Int. J. Adv. Manuf. Technol. 19(9), 637–641 (2002).
[Crossref]

Int. J. Mach. Tools Manuf. (2)

J.-D. Kim and D.-S. Kim, “Waviness compensation of precision machining by piezo-electric micro cutting device,” Int. J. Mach. Tools Manuf. 38(10-11), 1305–1322 (1998).
[Crossref]

F. Z. Fang, H. Wu, and Y. Liu, “Modelling and experimental investigation on nanometric cutting of monocrystalline silicon,” Int. J. Mach. Tools Manuf. 45(15), 1681–1686 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

P. N. Blake and R. O. Scattergood, “Ductile-regime machining of germanium and silicon,” J. Am. Ceram. Soc. 73(4), 949–957 (1990).
[Crossref]

J. Mater. Process. Technol. (2)

F. Z. Fang, H. Wu, W. Zhou, and X. Hu, “A study on mechanism of nano-cutting single crystal silicon,” J. Mater. Process. Technol. 184(1), 407–410 (2007).
[Crossref]

M. Arif, M. Rahman, and W. Y. San, “Analytical model to determine the critical conditions for the modes of material removal in the milling process of brittle material,” J. Mater. Process. Technol. 212(9), 1925–1933 (2012).
[Crossref]

JSME Int. J., Ser. C (1)

J. Yan, K. Maekawa, J. i. Tamaki, and A. Kubo, “Experimental study on the ultraprecision ductile machinability of single-crystal germanium,” JSME Int. J., Ser. C 47(1), 29–36 (2004).

Manu. Lett. (1)

S. Shojaee, T. Harriman, Y. Qi, D. Lucca, B. Dutterer, M. Davies, and T. Suleski, “Spatial variations in stress and crystal quality in diamond turned ZnSe surfaces measured by Raman spectroscopy,” Manu. Lett. 2(2), 35–39 (2014).

Nanoscale Res. Lett. (1)

M. Lai, X. Zhang, and F. Fang, “Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation,” Nanoscale Res. Lett. 8(1), 353 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Precis. Eng. (3)

B. S. Dutterer, J. L. Lineberger, P. J. Smilie, D. S. Hildebrand, T. A. Harriman, M. A. Davies, T. J. Suleski, and D. A. Lucca, “Diamond milling of an Alvarez lens in germanium,” Precis. Eng. 38(2), 398–408 (2014).
[Crossref]

T. Shibata, S. Fujii, E. Makino, and M. Ikeda, “Ductile-regime turning mechanism of single-crystal silicon,” Precis. Eng. 18(2-3), 129–137 (1996).
[Crossref]

T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precis. Eng. 13(4), 243–250 (1991).
[Crossref]

Other (6)

K. Garrard, T. Bruegge, J. Hoffman, T. A. Dow, and A. Sohn, “Design tools for freeform optics,” in Optics & Photonics 2005 (ISOP, 2005), pp. 58740A–58711.

M. L. Barkman, B. S. Dutterer, M. A. Davies, and T. J. Suleski, “Free-form machining for micro-imaging systems,” in MOEMS-MEMS 2008 Micro and Nanofabrication (ISOP, 2008), paper 68830G.

Y. Su, X. Chen, X. Guo, G. Rui, X. Liu, F. Zhang, C. Yang, Y. Xiao, and Z. Xu, “New fabrication technology in single point diamond turning for IR aspheric optical parts,” in 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014) (ISOP, 2014), paper 92811L.

G. E. Davis, G. L. Herrit, and A. R. Hedges, “Diamond turning considerations in the manufacture of beam shaping optics,” in SPIE Optical Engineering + Applications (ISOP, 2011), paper 81300K.

M. Mukaida and J. Yan, “Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo,” Int. J. Mach. Tools Manuf.in press.

Y.-C. Yeo, X. Gong, M. J. van Dal, G. Vellianitis, and M. Passlack, “Germanium-based transistors for future high performance and low power logic applications,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 2.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Strategy of machining freeform optics on IR materials.
Fig. 2
Fig. 2 Design of (a) structure of IR optical system, (b) spot diagram and (c) MTF of system.
Fig. 3
Fig. 3 (a) Design of NRFS and its (b) Rotational 2D surface curve and (c) NRS.
Fig. 4
Fig. 4 Schematic of FTS-assisted ultra-precision turning.
Fig. 5
Fig. 5 Schematic of (a) tool path on NRFS, (b) x-slide and z-slide motions and (c) FTS motion.
Fig. 6
Fig. 6 Illustration of (a) FTS-assisted ultra-precision turning and (b) machined germanium surface.
Fig. 7
Fig. 7 Illustration of (a) measurement by white light interferometer and (b) results of surface roughness on different area.
Fig. 8
Fig. 8 (a) MTF measuring system and (b) results in FOV of 0°, 10° and 20°.
Fig. 9
Fig. 9 Illustration of (a) optical system structure and sample images at the distance of (b) 10m, (c) 30m, and (d) 500m.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

z(r)= c r 2 1+ 1( 1+k ) c 2 r 2 + i=1 A i r i ,
z(x,y)= c r 2 1+ 1( 1+k ) c 2 r 2 + m=1 n=1 A mn x m y n ,
m=1 n=1 A mn x m y n = A 10 x+ A 01 y+ A 20 x 2 + A 11 xy+ A 02 y 2 + .
z(x,y)=z(r)+δ(x,y).
A 2m,2n = C m+n m a n , m,n=1,2,3 ,
z(x,y)= z r (r)+ z n (x,y),
z r (r)= c r 2 1+ 1( 1+k ) c 2 r 2 + a 1 r 2 + a 2 r 4 + a 3 r 6 +,
a n = A 2n,0 + A 0,2n 2 , n=1,2,3 .
L= f 2 +Δ z 0 2 ,
d m = R t [ ( R t 2 ( R t a 0 Δ z 0 ) 2 f ) 2 + ( R t a 0 ) 2 ] 1/2 ,
α m =arccos( R t a 0 R t d m ).
{ ρ 0 = R w f S t i φ 0 =2πS t i z 0 = z r (r)| r=ρ w 0 = z n (x,y)| x= ρ 0 cos φ 0 ,y= ρ 0 sin φ 0 ,
t i = 60i S N t , i=0,1,, R w S N t f S ,

Metrics