Abstract

We present the first experimental demonstration of a novel type of narrowband and wavelength-tunable multilayer transmission filter for the extreme ultraviolet (EUV) region. The operating principle of the filter is based on spatially overlapping the nodes of a standing wave field with the absorbing layers within the multilayer structure. For a wavelength with a matching node pattern, this increases the transmission as compared to neighboring wavelengths where anti-nodes overlap with the absorbing layers. Using Ni/Si multilayers where Ni provides strong absorption, we demonstrate the proper working of such anomalous transmission filter. The demonstration is carried out at the example of 13.5 nm wavelength and at normal incidence, providing a 0.27 nm-wide transmission peak. We also demonstrate wavelength tunability by operating the same Ni/Si filter at different wavelengths by varying the angle of incidence. As the multilayer filter is directly deposited on the active area of an EUV-sensitive photodiode, this provides an extremely compact device for easy spectral monitoring in the EUV. The transmission spectrum of the filter is modeled and found to be in good agreement with the experimental data. The agreement proves that such filters and compact monitoring devices can be straightforwardly designed and fabricated, as desired, also for other EUV wavelengths, bandwidths and angles of incidence, thereby showing a high potential for applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm

Benjawan Kjornrattanawanich, Saša Bajt, and John F. Seely
Appl. Opt. 43(5) 1082-1090 (2004)

Triple-wavelength, narrowband Mg/SiC multilayers with corrosion barriers and high peak reflectance in the 25-80 nm wavelength region

Mónica Fernández-Perea, Regina Soufli, Jeff C. Robinson, Luis Rodríguez De Marcos, Jose A. Méndez, Juan I. Larruquert, and Eric M. Gullikson
Opt. Express 20(21) 24018-24029 (2012)

Terbium-based extreme ultraviolet multilayers

David L. Windt, John F. Seely, Benjawan Kjornrattanawanich, and Yu. A. Uspenskii
Opt. Lett. 30(23) 3186-3188 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V. Bakshi, EUV Sources for Lithography (SPIE, 2006).
    [Crossref]
  2. U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
    [Crossref]
  3. U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
    [Crossref]
  4. C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
    [Crossref]
  5. G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
    [Crossref]
  6. M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
    [Crossref]
  7. H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
    [Crossref]
  8. A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
    [Crossref]
  9. V. Banine and R. Moors, “Plasma sources for EUV lithography exposure tools,” J. Phys. D: Appl. Phys. 37(23), 3207–3212 (2004).
    [Crossref]
  10. W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
    [Crossref]
  11. N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23(14), 2386–2392 (1984).
    [Crossref] [PubMed]
  12. J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
    [Crossref]
  13. J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
    [Crossref]
  14. I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
    [Crossref]
  15. G. Borrmann, “Über Extinktionsdiagramme der Röntgenstrahlen von Quarz,” Physik. Z. 42, 157–162 (1941).
  16. G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127, (4), 297–323 (1950).
    [Crossref]
  17. M. von Laue, “Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall,” Acta Crystallogr. 2, 106–113 (1949).
    [Crossref]
  18. B. W. Batterman and H. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).
    [Crossref]
  19. M. Hart, “X-ray polarization phenomena,” Philos. Mag. B 38(1), 41–56 (1978).
    [Crossref]
  20. B. W. Batterman, “X-ray phase plate,” Phys. Rev. B 45, 12677 (1992).
    [Crossref]
  21. S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
    [Crossref]
  22. S. Kishino, “X-ray channeling technique using anomalous transmission and its application to Si micro-defects induced by heat treatment,” J. Electron. Mater. 7(6), 727–736 (1978).
    [Crossref]
  23. R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
    [Crossref] [PubMed]
  24. Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
    [Crossref] [PubMed]
  25. M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
    [Crossref]
  26. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
    [Crossref]
  27. I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
    [Crossref]
  28. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  29. L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95(2), 359–369 (1954).
    [Crossref]
  30. D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
    [Crossref]
  31. A. V. Vinogradov and B. Y. Zeldovich, “X-ray and far uv multilayer mirrors: principles and possibilities,” Appl. Opt. 16(1), 89–93 (1977).
    [Crossref] [PubMed]
  32. I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulae of XUV multilayer optics,” Phys. Scripta 17, 137–145 (1987).
    [Crossref]
  33. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
    [Crossref]
  34. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [Crossref]
  35. CXRO X-Ray Database, “X-Ray Interactions With Matter,” (The Center for X-Ray Optics, 2010), http://henke.lbl.gov/optical_constants/ .
  36. R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultravioletâǍŞsoft-x-ray region,” Appl. Opt. 36(22), 5421–5440 (1997).
    [Crossref]
  37. J. Jonkers, “High power extreme ultra-violet (EUV) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8–S16 (2006).
    [Crossref]
  38. N. I. Chkhalo and N. N. Salashchenko, “Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics,” AIP Advances 3, 082130 (2013).
    [Crossref]
  39. V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
    [Crossref]
  40. G. O’Sullivan and B. Li, “Development of laser-produced plasma sources for extreme ultraviolet lithography,” J. Micro. Nanolithogr. MEMS MOEMS 11(2), 021108 (2012).
    [Crossref]
  41. R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
    [Crossref]
  42. E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
    [Crossref]
  43. B. Kjornrattanawanich, S. Bajt, and J. F. Seely, “Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm,” Appl. Opt. 43(5), 1082–1090 (2004).
    [Crossref] [PubMed]
  44. F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
    [Crossref]
  45. B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
    [Crossref]
  46. H. Rabus, V. Persch, and G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36(22), 5421–5440 (1997).
    [Crossref] [PubMed]
  47. S. J. Goh, H. J. M. Bastiaens, B. Vratzov, Q. Huang, F. Bijkerk, and K.-J. Boller, “Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range,” Opt. Express 23(4), 4421–4434 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

2013 (3)

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

N. I. Chkhalo and N. N. Salashchenko, “Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics,” AIP Advances 3, 082130 (2013).
[Crossref]

2012 (3)

G. O’Sullivan and B. Li, “Development of laser-produced plasma sources for extreme ultraviolet lithography,” J. Micro. Nanolithogr. MEMS MOEMS 11(2), 021108 (2012).
[Crossref]

G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

2011 (2)

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
[Crossref]

2010 (1)

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

2009 (2)

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

2008 (2)

R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
[Crossref] [PubMed]

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

2007 (1)

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

2006 (2)

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

J. Jonkers, “High power extreme ultra-violet (EUV) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8–S16 (2006).
[Crossref]

2004 (2)

2003 (2)

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
[Crossref]

2002 (2)

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

2001 (1)

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

1998 (1)

D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

1997 (2)

1996 (1)

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

1993 (2)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
[Crossref]

1992 (3)

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

B. W. Batterman, “X-ray phase plate,” Phys. Rev. B 45, 12677 (1992).
[Crossref]

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

1989 (1)

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

1987 (1)

I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulae of XUV multilayer optics,” Phys. Scripta 17, 137–145 (1987).
[Crossref]

1984 (1)

1978 (2)

M. Hart, “X-ray polarization phenomena,” Philos. Mag. B 38(1), 41–56 (1978).
[Crossref]

S. Kishino, “X-ray channeling technique using anomalous transmission and its application to Si micro-defects induced by heat treatment,” J. Electron. Mater. 7(6), 727–736 (1978).
[Crossref]

1977 (1)

1964 (1)

B. W. Batterman and H. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).
[Crossref]

1954 (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95(2), 359–369 (1954).
[Crossref]

1950 (1)

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127, (4), 297–323 (1950).
[Crossref]

1949 (1)

M. von Laue, “Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall,” Acta Crystallogr. 2, 106–113 (1949).
[Crossref]

1941 (1)

G. Borrmann, “Über Extinktionsdiagramme der Röntgenstrahlen von Quarz,” Physik. Z. 42, 157–162 (1941).

Ahmad, I.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Akiyama, H.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Alameda, J. B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Ariga, T.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Bajt, S.

B. Kjornrattanawanich, S. Bajt, and J. F. Seely, “Mo/B4C/Si multilayer-coated photodiode with polarization sensitivity at an extreme-ultraviolet wavelength of 13.5 nm,” Appl. Opt. 43(5), 1082–1090 (2004).
[Crossref] [PubMed]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Bakshi, V.

V. Bakshi, EUV Sources for Lithography (SPIE, 2006).
[Crossref]

Balogh, I.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Banine, V.

V. Banine and R. Moors, “Plasma sources for EUV lithography exposure tools,” J. Phys. D: Appl. Phys. 37(23), 3207–3212 (2004).
[Crossref]

Banine, V. Y.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Barbee, T. W.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Bastiaens, H. J. M.

Batterman, B. W.

B. W. Batterman, “X-ray phase plate,” Phys. Rev. B 45, 12677 (1992).
[Crossref]

B. W. Batterman and H. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).
[Crossref]

Beckhoff, B.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Bijkerk, F.

S. J. Goh, H. J. M. Bastiaens, B. Vratzov, Q. Huang, F. Bijkerk, and K.-J. Boller, “Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range,” Opt. Express 23(4), 4421–4434 (2015).
[Crossref] [PubMed]

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Birner, H.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Boller, K.-J.

Bolshukhin, D.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Borisov, V. M.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Borrmann, G.

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127, (4), 297–323 (1950).
[Crossref]

G. Borrmann, “Über Extinktionsdiagramme der Röntgenstrahlen von Quarz,” Physik. Z. 42, 157–162 (1941).

Brudermann, J.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Bruijn, S.

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

Canfield, L. R.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

Castrucci, P.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Chkhalo, N. I.

N. I. Chkhalo and N. N. Salashchenko, “Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics,” AIP Advances 3, 082130 (2013).
[Crossref]

Clift, W. M.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Cole, H.

B. W. Batterman and H. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).
[Crossref]

Collins, S. P.

R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
[Crossref] [PubMed]

D’Arcya, R.

G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Eidmann, K.

W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
[Crossref]

Elagin, M.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Endo, A.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Enke, S.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Enkisch, H.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Feigl, T.

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

Flohrer, F.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Flores, Y.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Folta, J. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Gäbel, K.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Goh, S. J.

Gottwald, A.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Götze, S.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Gullikson, E. M.

R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultravioletâǍŞsoft-x-ray region,” Appl. Opt. 36(22), 5421–5440 (1997).
[Crossref]

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Harada, T.

Harilal, S.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

Hart, M.

M. Hart, “X-ray polarization phenomena,” Philos. Mag. B 38(1), 41–56 (1978).
[Crossref]

Hassanein, A.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Hergenhan, G.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Horta, H.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Hoshino, H.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Huang, Q.

Imamura, H.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Ishikawa, T.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Ivanov, A. S.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Jonkers, J.

J. Jonkers, “High power extreme ultra-violet (EUV) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8–S16 (2006).
[Crossref]

Kaiser, N.

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

Kalashnikov, M.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Kashiwase, Y.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Katsuki, S.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Kaufmann, B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Khristoforov, O. B.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Kilbane, D.

G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
[Crossref]

Kischkat, J.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Kishino, S.

S. Kishino, “X-ray channeling technique using anomalous transmission and its application to Si micro-defects induced by heat treatment,” J. Electron. Mater. 7(6), 727–736 (1978).
[Crossref]

Kita, T.

Kjornrattanawanich, B.

Klein, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Kleinschmidt, J.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Klöpfel, D.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Kogiso, M.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Köhler, P.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Komori, H.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Kondo, Y.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Korde, R.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

Korobotchko, V.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Koshelev, K. N.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Kozhevnikov, I.

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

Kozhevnikov, I. V.

I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulae of XUV multilayer optics,” Phys. Scripta 17, 137–145 (1987).
[Crossref]

Krumrey, M.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Kurlov, S.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Kuroda, H.

Lagomarsino, S.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Laundy, D.

R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
[Crossref] [PubMed]

Letardi, P.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Li, B.

G. O’Sullivan and B. Li, “Development of laser-produced plasma sources for extreme ultraviolet lithography,” J. Micro. Nanolithogr. MEMS MOEMS 11(2), 021108 (2012).
[Crossref]

Louis, E.

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Lv, P.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

MacDonald, K. F.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Makhotkin, I. A.

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

Masselink, W. T.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Minoura, M.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Mizoguchi, H.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Monastyrskyi, G.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Moors, R.

V. Banine and R. Moors, “Plasma sources for EUV lithography exposure tools,” J. Phys. D: Appl. Phys. 37(23), 3207–3212 (2004).
[Crossref]

Mori, M.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Müllender, S.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Müller, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Nakano, N.

Namihira, T.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Nedelcu, I.

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Nickles, P. V.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

O’Sullivan, G.

G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
[Crossref]

G. O’Sullivan and B. Li, “Development of laser-produced plasma sources for extreme ultraviolet lithography,” J. Micro. Nanolithogr. MEMS MOEMS 11(2), 021108 (2012).
[Crossref]

Parratt, L. G.

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95(2), 359–369 (1954).
[Crossref]

Persch, V.

Peters, S.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Pettifer, R. F.

R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
[Crossref] [PubMed]

Rabus, H.

Radloff, W.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Richardson, M. C.

W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
[Crossref]

Richter, M.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Ringling, J.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Salashchenko, N. N.

N. I. Chkhalo and N. N. Salashchenko, “Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics,” AIP Advances 3, 082130 (2013).
[Crossref]

Sandner, W.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Sasaki, S.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Savelli, G.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Scarinci, F.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Schnürer, M.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Scholze, F.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
[Crossref]

Schriever, G.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Schwanda, W.

W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
[Crossref]

Seely, J. F.

Semtsiv, M. P.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Sizyuk, T.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

Sizyuk, V.

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

Soufli, R.

Soumagne, G.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Spiller, E. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Stamm, U.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Stefani, G.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Stiel, H.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Swinkels, G. H. P. M.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Tebano, A.

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Ter-Avetisyan, S.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

Thornagel, R.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Tran, C. D.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Tümmler, J.

F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
[Crossref]

Ueno, Y.

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

Ulm, G.

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
[Crossref]

H. Rabus, V. Persch, and G. Ulm, “Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges,” Appl. Opt. 36(22), 5421–5440 (1997).
[Crossref] [PubMed]

Ushida, K.

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

van de Kruijs, R. W. E.

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Vest, R. E.

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

Vinogradov, A. V.

I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulae of XUV multilayer optics,” Phys. Scripta 17, 137–145 (1987).
[Crossref]

A. V. Vinogradov and B. Y. Zeldovich, “X-ray and far uv multilayer mirrors: principles and possibilities,” Appl. Opt. 16(1), 89–93 (1977).
[Crossref] [PubMed]

Vinokhodov, A. Y.

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

Vogt, U.

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

von Laue, M.

M. von Laue, “Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall,” Acta Crystallogr. 2, 106–113 (1949).
[Crossref]

Vratzov, B.

Wang, Q.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Wegner, T.

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

Windt, D. L.

D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Yakshin, A.

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

Yakshin, A. E.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Yulin, S.

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

Zeldovich, B. Y.

Zhang, C. H.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhao, Y. P.

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Ziener, C.

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

Zoethout, E.

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

Acta Crystallogr. (1)

M. von Laue, “Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall,” Acta Crystallogr. 2, 106–113 (1949).
[Crossref]

AIP Advances (1)

N. I. Chkhalo and N. N. Salashchenko, “Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics,” AIP Advances 3, 082130 (2013).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, “EUV radiation characteristics of a CO2 laser produced Xe plasma,” Appl. Phys. B 83, 213–218 (2006).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Comput. Phys. (1)

D. L. Windt, “IMD—Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Eur. Phys. J. D (1)

M. Schnürer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radloff, M. Kalashnikov, W. Sandner, and P. V. Nickles, “Influence of laser pulse width on absolute EUV-yield from Xe-clusters,” Eur. Phys. J. D 14(3), 331–335 (2001).
[Crossref]

IEEE Trans. Ind. Appl. (1)

C. H. Zhang, P. Lv, Y. P. Zhao, Q. Wang, S. Katsuki, T. Namihira, H. Horta, H. Imamura, Y. Kondo, and H. Akiyama, “Xenon discharge-produced plasma radiation source for EUV lithography,” IEEE Trans. Ind. Appl. 46(4), 1661–1666 (2010).
[Crossref]

Infrared Phys. Techn. (1)

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers,” Infrared Phys. Techn. 67, 432–435 (2014).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

E. M. Gullikson, R. Korde, L. R. Canfield, and R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996).
[Crossref]

J. Electron. Mater. (1)

S. Kishino, “X-ray channeling technique using anomalous transmission and its application to Si micro-defects induced by heat treatment,” J. Electron. Mater. 7(6), 727–736 (1978).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (2)

A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro. Nanolithogr. MEMS MOEMS 8(4), 041503 (2009).
[Crossref]

G. O’Sullivan and B. Li, “Development of laser-produced plasma sources for extreme ultraviolet lithography,” J. Micro. Nanolithogr. MEMS MOEMS 11(2), 021108 (2012).
[Crossref]

J. Mod. Opt. (1)

G. O’Sullivan, D. Kilbane, and R. D’Arcya, “Recent progress in source development for extreme UV lithography,” J. Mod. Opt. 59(10), 855–872 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (2)

V. Banine and R. Moors, “Plasma sources for EUV lithography exposure tools,” J. Phys. D: Appl. Phys. 37(23), 3207–3212 (2004).
[Crossref]

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D: Appl. Phys. 44(25), 253001 (2011).
[Crossref]

J. X-Ray Sci. Technol. (1)

W. Schwanda, K. Eidmann, and M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4(1), 8–17 (1993).
[Crossref]

Light Sci. Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Metrologia (1)

F. Scholze, J. Tümmler, and G. Ulm, “High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline,” Metrologia 40(1), S224–S228 (2003).
[Crossref]

Nature (1)

R. F. Pettifer, S. P. Collins, and D. Laundy, “Quadrupole transitions revealed by Borrmann spectroscopy,” Nature 454, 196–199 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

I. Kozhevnikov, S. Yulin, T. Feigl, and N. Kaiser, “Effect of anomalous transmittance in EUV multilayer optics,” Opt. Commun. 281(11), 3025–3031 (2008).
[Crossref]

Opt. Eng. (1)

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41(8), 1797–1804 (2002).
[Crossref]

Opt. Express (1)

Philos. Mag. B (1)

M. Hart, “X-ray polarization phenomena,” Philos. Mag. B 38(1), 41–56 (1978).
[Crossref]

Phys. Rev. (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95(2), 359–369 (1954).
[Crossref]

Phys. Rev. B (3)

M. Mori, Y. Kashiwase, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons through germanium crystals: a high-angular-resolution study,” Phys. Rev. B 45, 9583 (1992).
[Crossref]

B. W. Batterman, “X-ray phase plate,” Phys. Rev. B 45, 12677 (1992).
[Crossref]

S. Lagomarsino, G. Stefani, P. Castrucci, P. Letardi, F. Scarinci, G. Savelli, and A. Tebano, “Application of the Borrmann effect to x-ray monochromatization and to the overlayer versus substrate signal-ratio enhancement,” Phys. Rev. B 45, 6953 (1992).
[Crossref]

Phys. Rev. Lett. (1)

Y. Kashiwase, M. Mori, M. Kogiso, K. Ushida, M. Minoura, T. Ishikawa, and S. Sasaki, “Anomalous transmission of x rays scattered by phonons in a germanium crystal,” Phys. Rev. Lett. 62, 925 (1989).
[Crossref] [PubMed]

Phys. Scripta (1)

I. V. Kozhevnikov and A. V. Vinogradov, “Basic formulae of XUV multilayer optics,” Phys. Scripta 17, 137–145 (1987).
[Crossref]

Phys. Status Solidi B (1)

B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, R. Müller, M. Richter, F. Scholze, R. Thornagel, and G. Ulm, “A quarter-century of metrology using synchrotron radiation by PTB in Berlin,” Phys. Status Solidi B 246(7), 1415–1434 (2009).
[Crossref]

Physik. Z. (1)

G. Borrmann, “Über Extinktionsdiagramme der Röntgenstrahlen von Quarz,” Physik. Z. 42, 157–162 (1941).

Plasma Sources Sci. Technol. (1)

J. Jonkers, “High power extreme ultra-violet (EUV) light sources for future lithography,” Plasma Sources Sci. Technol. 15, S8–S16 (2006).
[Crossref]

Proc. SPIE (6)

R. W. E. van de Kruijs, S. Bruijn, A. Yakshin, I. Nedelcu, and F. Bijkerk, “Interface diffusion kinetics and lifetime scaling in multilayer Bragg optics,” Proc. SPIE 8139, 81390A (2011).
[Crossref]

J. Kischkat, S. Peters, M. P. Semtsiv, T. Wegner, M. Elagin, G. Monastyrskyi, Y. Flores, S. Kurlov, and W. T. Masselink, “Design, fabrication, and applications of ultra-narrow infrared bandpass interference filters,” Proc. SPIE 8896, 889614 (2013).
[Crossref]

U. Stamm, I. Ahmad, V. M. Borisov, F. Flohrer, K. Gäbel, S. Götze, A. S. Ivanov, O. B. Khristoforov, D. Klöpfel, P. Köhler, J. Kleinschmidt, V. Korobotchko, J. Ringling, G. Schriever, and A. Y. Vinokhodov, “High-power EUV sources for lithography: a comparison of laser-produced plasma and gas-discharge-produced plasma,” Proc. SPIE 4688, 122–133 (2002).
[Crossref]

U. Stamm, I. Ahmad, I. Balogh, H. Birner, D. Bolshukhin, J. Brudermann, S. Enke, F. Flohrer, K. Gäbel, S. Götze, G. Hergenhan, J. Kleinschmidt, D. Klöpfel, V. Korobotchko, J. Ringling, G. Schriever, C. D. Tran, and C. Ziener, “High-power EUV lithography sources based on gas discharges and laser-produced plasmas,” Proc. SPIE 5037, 119–129 (2003).
[Crossref]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, F. Bijkerk, H. Enkisch, and S. Müllender, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[Crossref]

I. A. Makhotkin, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Optimization of LaN/B multilayer mirrors for 6.x nm wavelength,” Proc. SPIE 8848, 88480O (2013).
[Crossref]

Rev. Mod. Phys. (1)

B. W. Batterman and H. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).
[Crossref]

Z. Phys. (1)

G. Borrmann, “Die Absorption von Röntgenstrahlen im Fall der Interferenz,” Z. Phys. 127, (4), 297–323 (1950).
[Crossref]

Other (2)

V. Bakshi, EUV Sources for Lithography (SPIE, 2006).
[Crossref]

CXRO X-Ray Database, “X-Ray Interactions With Matter,” (The Center for X-Ray Optics, 2010), http://henke.lbl.gov/optical_constants/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A multilayer structure, comprising a periodic stack of an absorber material (dark opaque red) and a spacer material (light transparent yellow), is subject to EUV radiation under normal incidence with a given wavelength, λ0. The interference between the incoming and reflected waves creates a standing wave pattern inside the multilayer stack, represented by the electric field envelope E(z). The geometrical parameters of the multilayer structure are fine-tuned such that the wave field nodes overlap with the absorber layers. As this reduces the amplitude of the electric field within the absorber layers, the incident radiation experiences a decreased absorption, and thus an increased transmission, compared to other, neighboring wavelengths that do not fit the periodic structure.

Fig. 2
Fig. 2

Calculated transmission spectrum at normal incidence (θ = 0°) of a Ni/Si anomalous-transmission (AT) filter consisting of N = 74 bilayers with dNi = 1.3 nm and dSi = 5.4 nm, i.e., d = dNi + dSi = 6.7 nm and γ = dNi/d = 0.19.

Fig. 3
Fig. 3

Calculated transmission spectra at normal incidence (θ = 0°) of the same Ni/Si anomalous-transmission (AT) filter as in Fig. 2 (red curve), and of a Ni/Si AT filter coated with an additional 200 nm-thick Zr film (blue curve). For direct comparison via equal peak transmittances (see insert), the number of bilayers in the Zr-coated Ni/Si AT filter is reduced to N = 61, whereas the multilayer period, d = 6.74 nm, and the thickness ratio, γ = 0.19, remain unchanged.

Fig. 4
Fig. 4

Calculated anomalous-transmission (AT) wavelength λT (black contour lines) and AT peak transmittance T (color scale) for the Ni/Si AT filter described in Fig. 2, upon tuning of the angle of incidence θ, for a range of multilayer periods d. The number of bilayers, N = 74, and the thickness ratio, γ = 0.19, are fixed.

Fig. 5
Fig. 5

Calculated anomalous-transmission (AT) bandwidth ΔλT (black contour lines) and AT peak transmittance T (color scale) for the Ni/Si AT filter described in Fig. 2, upon tuning of the number of bilayers N, for a range of multilayer periods d. The angle of incidence, θ = 0°, and the thickness ratio, γ = 0.19, are fixed. For each multilayer period, d, the corresponding AT wavelength, λT, can be obtained from Fig. 4.

Fig. 6
Fig. 6

Photograph of (a) the silicon photodiode and (b) a 50nm thin silicon nitride membrane, after deposition of a Ni/Si anomalous-transmission (AT) filter.

Fig. 7
Fig. 7

Experimental and calculated transmittance of a Ni/Si anomalous-transmission (AT) filter coated on a silicon photodiode, at three angles of incidence (0°, 10° and 20°). The sharp decrease in transmittance around 12.4 nm is connected to the L-absorption edge of Si.

Fig. 8
Fig. 8

Measured and calculated transmittance of a Ni/Si anomalous-transmission (AT) filter coated on a 50-nm-thick Si3N4 membrane, at three angles of incidence (0°, 10° and 20°).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T ( θ , λ ) = | B 2 σ 2 4 b 2 b sinh ( S L ) i B 2 σ 2 4 b 2 cosh ( S L ) | 2 ,
S = 2 π d λ 2 B 2 σ 2 4 b 2 ; B = 2 ( ϵ A ϵ S ) sin ( π γ ) π ; b = ( λ 2 d ) 2 + 1 μ cos 2 ( θ ) ; σ = { 1 , for s-polarization cos ( 2 θ ) , for p-polarization .
( λ T 2 d ) 2 = cos 2 θ + Re ( μ 1 ) 1 η Re B 2 σ ,
η = sin ( π γ ) π ( γ + g ) , with g = Im ( ϵ S ) Im ( ϵ A ϵ S ) .
tan ( π γ o p t ) = π ( γ o p t + g ) .
f = Re ( ϵ A ϵ S ) Im ( ϵ A ϵ S ) .
( λ B 2 d ) 2 = cos 2 θ + Re ( μ 1 ) η Re B 2 σ .
λ T λ B λ B σ 2 π cos 2 θ Re ( ϵ S ϵ A ) tan ( π γ o p t ) sin 2 ( π γ o p t ) .
Δ λ B λ B = 2 2 3 Re ( ϵ S ϵ A ) cos 2 θ sin ( π γ o p t ) π σ .
λ T λ B Δ λ B = 3 4 2 tan ( π γ o p t ) sin ( π γ o p t ) .
Δ λ B λ B Im ( μ ) cos 2 ( θ ) [ sin 2 ( π γ o p t ) ( 1 + f 2 cos 2 ( π γ o p t ) ) ] 3 / 4 .
λ T λ B Δ λ B | f | 2 π sin 1 / 2 ( π γ o p t ) ( 1 + f 2 cos 2 ( π γ o p t ) ) .
T ( λ ) = 0 ° 90 ° ρ ( θ ) τ ( θ , λ ) d θ .