Abstract

We describe a technique for the quantitative characterization of endoscopic imaging fibers using an interference pattern as the standard object to be imaged. The visibility of the pattern at the other end of the fiber is then analyzed as wavelength and fringe period are varied. We demonstrate the use of the technique by comparing three fibers: two fabricated in-house from the same preform, designed to minimize inter-core coupling at visible wavelengths less than 650 nm, and a commercial imaging fiber. The techniques discussed are currently being used to optimize fibers for fluorescence bronchoscopy to be used in intensive care clinics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low index contrast imaging fibers

J. M. Stone, H. A. C. Wood, K. Harrington, and T. A. Birks
Opt. Lett. 42(8) 1484-1487 (2017)

High-resolution air-clad imaging fibers

H. A. C. Wood, K. Harrington, T. A. Birks, J. C. Knight, and J. M. Stone
Opt. Lett. 43(21) 5311-5314 (2018)

Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography

Matthew D. Risi, Houssine Makhlouf, Andrew R. Rouse, and Arthur F. Gmitro
Appl. Opt. 54(1) 101-113 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  2. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [Crossref] [PubMed]
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  4. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [Crossref]
  5. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Homogeneous and Heterogeneous Multi-core Fibers,” Opt. Express 20(2), 949–959 (2012).
    [PubMed]
  6. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
    [Crossref]
  7. B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for infrared imaging,” Opt. Lett. 40(19), 4384–4387 (2015).
    [Crossref] [PubMed]
  8. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  9. T. Butz, Fourier Transformation for Pedestrians (Springer, 2006).
  10. J. H. Chang, H. G. Choi, S. H. Bae, D. H. Sim, H. Kim, and Y. C. Chung, “Crosstalk analysis in homogeneous multi-core two-mode fiber under bent condition,” Opt. Express 23(8), 9649–9657 (2015).
    [Crossref] [PubMed]
  11. “Data for Quantitative characterization of endoscopic imaging fibers,” https://doi.org/10.15125/BATH-00325

2015 (2)

2012 (1)

2010 (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

2008 (1)

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Bae, S. H.

Chang, J. H.

Chen, X.

Choi, H. G.

Chung, Y. C.

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Gai, X.

Guo, W.

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Kim, H.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Koshiba, M.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Homogeneous and Heterogeneous Multi-core Fibers,” Opt. Express 20(2), 949–959 (2012).
[PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Luther-Davies, B.

Matsuo, S.

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Qi, S.

Reichenbach, K. L.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Saitoh, K.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Homogeneous and Heterogeneous Multi-core Fibers,” Opt. Express 20(2), 949–959 (2012).
[PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Sim, D. H.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Takenaga, K.

Tang, D.

Tao, G.

Wang, R.

Xu, C.

Yang, A.

Yang, Z.

Yu, Y.

Zhai, C.

Zhang, B.

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283(4), 633–638 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (3)

T. Butz, Fourier Transformation for Pedestrians (Springer, 2006).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

“Data for Quantitative characterization of endoscopic imaging fibers,” https://doi.org/10.15125/BATH-00325

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagram of the apparatus used: (1) supercontinuum source, (2) mini-monochromator (3) delay line mirrors (4) imaging fiber under test (5) camera. The insets show an image of the interference pattern formed on the input end of the fiber and the resulting near field image at the test fiber’s output.
Fig. 2
Fig. 2 SEM images of the end face of fibers (a) B1 and (b) FIGH-30-650s, with insets showing magnified images of the fibers’ core patterns.
Fig. 3
Fig. 3 A typical binned intensity distribution (blue points) with the fit to Eq. (1) (red curve).
Fig. 4
Fig. 4 Calculated Fourier transforms of typical interference pattern viewed via (a) FIGH-30-650s and (b) B1.
Fig. 5
Fig. 5 Fringe visibility determined by binning method (a) and Fourier method (b) for each of the three fibers, versus wavelength. Error bars represent the standard deviation of a series of data points taken at a single wavelength, realigning the system between each measurement. The beam angle θ of 2.29° was chosen to give a fringe period of 15 µm at λ = 600 nm; the period at other wavelengths is indicated on the upper x axis. The inset in (a) is a plot of each wavelength's Fourier contrast value (y-axis) against its corresponding binning-derived visibility value (x-axis), with a quadratic fit y = 0.9416 x2 − 0.1051 x + 0.1616.
Fig. 6
Fig. 6 Portions of cropped fringe images used to produce the data in Figs. 5 and 6. (a) & (b) were taken using FIGH-30-650s, (c) & (d) using B1. (a) & (c) used 550 nm light, (b) & (d) used 650 nm light. Each image is are 80 μm across.
Fig. 7
Fig. 7 Images of “group 6” elements of a US Air Force test target taken using the FIGH-30-650s (a) & (b) and B1 (c) & (d) at zero working distance, illuminated in transmission by 550 nm (a) & (c) and 650 nm (b) & (d) light. The lines of element 2 have a width of 7.81 μm.
Fig. 8
Fig. 8 Fourier contrast data corresponding to that in Fig. 5(b) but obtained using a beam angle of θ = 2.75°, giving a fringe period of 12.5 µm at λ = 600 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = a 0 + a 1 sin 2 ( b x + c )
v i s i b i l i t y = a 1 a 1 + a 0

Metrics