Abstract

Chemical sensing using optical fibers is often challenging, as it is generally difficult to achieve strong interaction between the guided light and the analyte at the wavelength of interest for performing the detection. Despite this difficulty, many schemes exist (and can be found in the literature) for point chemical fiber sensors. However, the challenge increases even further when it comes to performing fully distributed chemical sensing. In this case, the optical signal which interacts with the analyte is typically also the signal that has to travel to and from the interrogator: for a good sensitivity, the light should interact strongly with the analyte, leading inevitably to an increased loss and a reduced range. Few works in the literature actually provide demonstrations of truly distributed chemical sensing and, although there have been several attempts to realize these sensors (e.g. based on special fiber coatings), the vast majority of these attempts has failed to reach widespread use due to several reasons, among them: lack of sensitivity or selectivity, lack of range or resolution, cross sensitivity to temperature or strain, or need to work at specific wavelengths where fiber instrumentation becomes extremely expensive or unavailable. In this work we provide a preliminary demonstration of the possibility of achieving distributed detection of gas presence with spectroscopic selectivity, high spatial resolution, potential for long range measurements and feasibility of having most of the interrogator system working at conventional telecom wavelengths. For a full exploitation of this concept, new fibers (or more likely, fiber bundles) should be developed capable of guiding specific wavelengths in the IR (corresponding to gas absorption wavelengths) with good overlap with the analyte while also having a solid core with good transmission behavior at 1.55 μm, and good thermal coupling between the two guiding structures.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

24 January 2017: Corrections were made to the abstract and body text.


OSA Recommended Articles
Towards label-free distributed fiber hydrogen sensor with stimulated Raman spectroscopy

F. Yang, Y. Zhao, Y. Qi, Y. Z. Tan, H. L. Ho, and W. Jin
Opt. Express 27(9) 12869-12882 (2019)

Fiber-based distributed bolometry

Regina Magalhães, Andres Garcia-Ruiz, Hugo F. Martins, João Pereira, Walter Margulis, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 27(4) 4317-4328 (2019)

Distributed gas sensing with optical fibre photothermal interferometry

Yuechuan Lin, Fei Liu, Xiangge He, Wei Jin, Min Zhang, Fan Yang, Hoi Lut Ho, Yanzhen Tan, and Lijuan Gu
Opt. Express 25(25) 31568-31585 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
    [Crossref]
  2. R. L. Woodfin, Trace Chemical Sensing of Explosives (John Wiley & Sons, 2006).
    [Crossref]
  3. R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sensors Actuat B-Chem 192, 804–811 (2014).
    [Crossref]
  4. J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
    [Crossref] [PubMed]
  5. M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors–an overview,” Anal. Bioanal. Chem. 372(5–6), 664–682 (2002).
    [Crossref]
  6. G. A. Brown and A. Hartog, “Optical fiber sensors in upstream oil & gas,” J. Petrol Technol. 54(11), 63–65 (2002).
    [Crossref]
  7. W. Cao and Y. Duan, “Optical fiber evanescent wave sensor for oxygen deficiency detection,” Sensors Actuat B-Chem 119(2), 363–369 (2006).
    [Crossref]
  8. W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
    [Crossref]
  9. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref] [PubMed]
  10. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  11. S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
    [Crossref]
  12. A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).
  13. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  14. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  15. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37(10), 1735–1740 (1998).
    [Crossref]
  16. J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).
  17. H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).
  18. A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
    [Crossref] [PubMed]
  19. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
    [Crossref]
  20. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  21. H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  22. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
    [Crossref]
  23. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
    [Crossref] [PubMed]
  24. L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
    [Crossref]
  25. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
    [Crossref]
  26. B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [Crossref]
  27. S. M. Klainer, “Fiber optic which is an inherent chemical sensor,” United States patent4,846,548 (July11, 1989).
  28. H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
    [Crossref]
  29. B. Culshaw, “Optical fiber sensor technologies: opportunities and–perhaps–pitfalls,” J. Lightwave Technol. 22(1), 39 (2004).
    [Crossref]
  30. J. P. Dakin, “Distributed optical fiber sensors,” Proc. SPIE 1797, 76–108 (1993).
    [Crossref]
  31. W. R. Seitz, “Chemical sensors based on fiber optics,” Anal. Chem. 56(1), 16A–34A (1984).
    [Crossref]
  32. M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
    [Crossref]
  33. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  34. I. Dicaire, “Optical Gas-Phase Frequency References Based on Photonic Crystal Technology,” (2012).
  35. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001).
    [Crossref]
  36. T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
    [Crossref]
  37. P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
    [Crossref]
  38. M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
    [Crossref]
  39. I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Applied optics 49(24), 4604–4609 (2010).
    [Crossref] [PubMed]
  40. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000).
    [Crossref]
  41. T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).
  42. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
    [Crossref] [PubMed]
  43. M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
    [Crossref]
  44. P. R. Yoder, Opto-mechanical Systems Design (CRC press, 2005).
  45. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [Crossref]
  46. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [Crossref] [PubMed]
  47. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
    [Crossref] [PubMed]
  48. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [Crossref] [PubMed]
  49. H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
    [Crossref]
  50. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
    [Crossref] [PubMed]
  51. D. N. Wang, “Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining,” Imaging and Applied Optics Technical Papaers (OSA, 2012), paper STu4F1.
  52. Y. J. He, “Novel D-shape LSPR fiber sensor based on nano-metal strips,” Opt. Express 21(20), 23498–23510 (2013).
    [Crossref] [PubMed]
  53. G. Stewart, F. A. Muhammad, and B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sensors Actuat. B-Chem 11(1), 521–524 (1993).
    [Crossref]
  54. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
    [Crossref]
  55. C. Martelli, J. Canning, D. Stocks, and M. J. Crossley, “Water-soluble porphyrin detection in a pure-silica photonic crystal fiber,” Opt. Lett. 31(14), 2100–2102 (2006).
    [Crossref] [PubMed]
  56. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied optics 47(15), 2790–2797 (2008).
    [Crossref] [PubMed]
  57. C. P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009).
    [Crossref]
  58. F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
    [Crossref]

2016 (4)

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

2015 (5)

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

2014 (4)

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sensors Actuat B-Chem 192, 804–811 (2014).
[Crossref]

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
[Crossref]

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

2013 (4)

Y. J. He, “Novel D-shape LSPR fiber sensor based on nano-metal strips,” Opt. Express 21(20), 23498–23510 (2013).
[Crossref] [PubMed]

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

2012 (4)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

2010 (2)

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Applied optics 49(24), 4604–4609 (2010).
[Crossref] [PubMed]

2009 (4)

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
[Crossref]

C. P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

2008 (2)

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[Crossref]

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied optics 47(15), 2790–2797 (2008).
[Crossref] [PubMed]

2007 (4)

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
[Crossref]

C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (1)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

2004 (3)

2003 (2)

2002 (2)

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors–an overview,” Anal. Bioanal. Chem. 372(5–6), 664–682 (2002).
[Crossref]

G. A. Brown and A. Hartog, “Optical fiber sensors in upstream oil & gas,” J. Petrol Technol. 54(11), 63–65 (2002).
[Crossref]

2001 (1)

2000 (1)

1998 (1)

1993 (2)

G. Stewart, F. A. Muhammad, and B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sensors Actuat. B-Chem 11(1), 521–524 (1993).
[Crossref]

J. P. Dakin, “Distributed optical fiber sensors,” Proc. SPIE 1797, 76–108 (1993).
[Crossref]

1984 (1)

W. R. Seitz, “Chemical sensors based on fiber optics,” Anal. Chem. 56(1), 16A–34A (1984).
[Crossref]

Ahlen, C. H.

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Akram, M.

H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
[Crossref]

Alam, S.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Amezcua-Correa, R.

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

Andrewsd, A. E.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castañon, J.

Ania-Castañon, J. D.

Argyros, A.

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Barretto, E. C. S.

Bartelt, H.

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

Belal, M.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Bergman, T. L.

T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Beugnot, J. C.

I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Applied optics 49(24), 4604–4609 (2010).
[Crossref] [PubMed]

Bharadwaj, R.

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sensors Actuat B-Chem 192, 804–811 (2014).
[Crossref]

Biraude, S. C.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Bisyarin, M. A.

Bjarklev, A.

Boersma, A.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Bolognini, G.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

Brito Cruz, C. H.

Brown, G. A.

G. A. Brown and A. Hartog, “Optical fiber sensors in upstream oil & gas,” J. Petrol Technol. 54(11), 63–65 (2002).
[Crossref]

Cain-Skaff, M.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Calcerrada, M.

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
[Crossref]

Canning, J.

Cao, W.

W. Cao and Y. Duan, “Optical fiber evanescent wave sensor for oxygen deficiency detection,” Sensors Actuat B-Chem 119(2), 363–369 (2006).
[Crossref]

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Cao, Y. C.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Carlsen, A.

Chatigny, S.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Cheng, L.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Chesini, G.

Chin, S.

Cordeiro, C. M. B.

Corredera, P.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
[Crossref]

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Cox, F. M.

Crossley, M. J.

Culshaw, B.

Dai, S.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Dakin, J. P.

J. P. Dakin, “Distributed optical fiber sensors,” Proc. SPIE 1797, 76–108 (1993).
[Crossref]

De Lucia, F. C.

F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
[Crossref]

De Smet, F.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Di Pasquale, F.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

Dicaire, I.

I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Applied optics 49(24), 4604–4609 (2010).
[Crossref] [PubMed]

I. Dicaire, “Optical Gas-Phase Frequency References Based on Photonic Crystal Technology,” (2012).

Dlugokenckyd, E. J.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Dominguez-Lopez, A.

Dower, P. M.

P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
[Crossref]

Duan, Y.

W. Cao and Y. Duan, “Optical fiber evanescent wave sensor for oxygen deficiency detection,” Sensors Actuat B-Chem 119(2), 363–369 (2006).
[Crossref]

Eluszkiewiczf, J.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Everitt, H. O.

F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
[Crossref]

Farrell, P. M.

P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
[Crossref]

Fernández de la Ossa, M.

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

Filograno, M. L.

Fischerg, M. L.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Fitt, A. D.

Folkenberg, J. R.

Franco, M. A. R.

Frazao, O.

Froggatt, M.

Furusawa, K.

Garcia-Ruiz, A.

García-Ruiz, C.

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
[Crossref]

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

Gibson, B C.

P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
[Crossref]

Gibson, B.

Gilbert, S. L.

Gonzalez-Herraez, M.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
[Crossref]

Gonzalez-Herráez, M.

González-Herráez, M.

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
[Crossref]

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Groothoff, N.

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Guyenot, V.

Hald, J.

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied optics 47(15), 2790–2797 (2008).
[Crossref] [PubMed]

Hansen, T. P.

Hartog, A.

G. A. Brown and A. Hartog, “Optical fiber sensors in upstream oil & gas,” J. Petrol Technol. 54(11), 63–65 (2002).
[Crossref]

Hartog, A. H.

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

He, Y. J.

Henningsen, J.

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied optics 47(15), 2790–2797 (2008).
[Crossref] [PubMed]

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Hogari, K.

Hoiby, P. E.

Huntington, S.

Imahama, M.

Incropera, F. P.

T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Jansen, R.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Janssens-Maenhouth, G.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Jensen, J. B.

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Ju, J.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Kersey, A.

Kirsch, J.

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Klainer, S. M.

S. M. Klainer, “Fiber optic which is an inherent chemical sensor,” United States patent4,846,548 (July11, 1989).

Knight, Jonathan C.

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

Kortc, E. A.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Kotov, O. I.

Koyamada, Y.

Kubota, K.

Lapointe, M. A.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Large, M. C. J.

Lavine, A. S.

T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Lehmann, H.

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

Liem, A.

Limpert, J.

Liokumovich, L. B.

Liou, J. H.

Liu, S.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Liu, Z.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Lucassen, T.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Ludvigsen, H.

Lwin, R.

Macias-Guarasa, J.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Maran, J. N.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Marazuela, M.

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors–an overview,” Anal. Bioanal. Chem. 372(5–6), 664–682 (2002).
[Crossref]

Martelli, C.

Martin-Lopez, S.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

Martín-López, S.

Martins, H. F.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

Masoudi, A.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Michalak, A. M.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Miller, S. M.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Milleri, B. R.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Milleri, J. B.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Mohammad, A. B. B.

H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
[Crossref]

Monro, T. M.

Montzkad, S. A.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Moore, J.

Moreno-Bondi, M.

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors–an overview,” Anal. Bioanal. Chem. 372(5–6), 664–682 (2002).
[Crossref]

Muhammad, F. A.

G. Stewart, F. A. Muhammad, and B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sensors Actuat. B-Chem 11(1), 521–524 (1993).
[Crossref]

Mukherji, S.

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sensors Actuat B-Chem 192, 804–811 (2014).
[Crossref]

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

Nehrkornf, T.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Newson, T.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Nielsen, K.

Nielsen, L. B.

Nolte, S.

Noordegraaf, D.

Nuño, J.

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

Olivero, P.

Pan, Z.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Pastor-Graells, J.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Pedersen, L. H.

Peng, T.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Peschel, T.

Petersen, J. C.

Petkie, D. T.

F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
[Crossref]

Petrovich, M.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Piché, M.

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Piote, D.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Please, C. P.

Poletti, F.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Postvoll, W.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Qazi, H. H.

H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
[Crossref]

Qi, L. F.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Revzin, A.

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Richardson, D.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Riishede, J.

Ritari, T.

Rochat, E.

Roy, P.

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Saalmink, M.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Schreiber, T.

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Seitz, W. R.

W. R. Seitz, “Chemical sensors based on fiber optics,” Anal. Chem. 56(1), 16A–34A (1984).
[Crossref]

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Siltanen, C.

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Simonian, A.

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Simonsen, H. R.

Sørensen, T.

Soto, M. A.

Stewart, G.

G. Stewart, F. A. Muhammad, and B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sensors Actuat. B-Chem 11(1), 521–524 (1993).
[Crossref]

Stocks, D.

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

Swann, W. C.

Sweeneyi, C.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Taki, M.

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

Tejedor, J.

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

Thévenaz, L.

Tünnermann, A.

Tuominen, J.

Ushakov, N. A.

Wang, D. N.

D. N. Wang, “Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining,” Imaging and Applied Optics Technical Papaers (OSA, 2012), paper STu4F1.

Wang, X.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Wheeler, N.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Wiegersma, S.

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

Willsch, R.

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

Wofsy, S. C.

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Woodfin, R. L.

R. L. Woodfin, Trace Chemical Sensing of Explosives (John Wiley & Sons, 2006).
[Crossref]

Wooler, J.

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Xu, T.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Yang, Z.

Yoder, P. R.

P. R. Yoder, Opto-mechanical Systems Design (CRC press, 2005).

Yu, C. P.

Zellmer, H.

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhao, Z.

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Zhou, Q.

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

M. Marazuela and M. Moreno-Bondi, “Fiber-optic biosensors–an overview,” Anal. Bioanal. Chem. 372(5–6), 664–682 (2002).
[Crossref]

Anal. Chem. (1)

W. R. Seitz, “Chemical sensors based on fiber optics,” Anal. Chem. 56(1), 16A–34A (1984).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Applied optics (2)

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Applied optics 47(15), 2790–2797 (2008).
[Crossref] [PubMed]

I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Applied optics 49(24), 4604–4609 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, “Biosensor technology: recent advances in threat agent detection and medicine,” Chem. Soc. Rev. 42, 8733–8768 (2013).
[Crossref] [PubMed]

Electrophoresis (1)

M. Calcerrada, M. Fernández de la Ossa, P. Roy, M. González-Herráez, and C. García-Ruiz, “Fundamentals on new capillaries inspired by photonic crystal fibers as optofluidic separation systems in CE,” Electrophoresis 36(3), 433–440 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

F. C. De Lucia, D. T. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter/terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron. 45(2), 163–170 (2009).
[Crossref]

J. Lightwave Technol. (9)

J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, and M. Gonzalez-Herraez, “Towards Prevention of Pipeline Integrity Threats using a Smart Fiber Optic Surveillance System,” J. Lightwave Technol. PP.(), 1 (2016).

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001).
[Crossref]

B. Culshaw, “Optical fiber sensor technologies: opportunities and–perhaps–pitfalls,” J. Lightwave Technol. 22(1), 39 (2004).
[Crossref]

B. Culshaw and A. Kersey, “Fiber-optic sensing: A historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[Crossref]

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32, 152–162 (2014).
[Crossref]

H. F. Martins, S. Martín-López, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions,” J. Lightwave Technol. 33(17), 3660–3671 (2015).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Petrol Technol. (1)

G. A. Brown and A. Hartog, “Optical fiber sensors in upstream oil & gas,” J. Petrol Technol. 54(11), 63–65 (2002).
[Crossref]

Laser Photon. Rev. (1)

M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser Photon. Rev. 9(6), 604–627 (2015).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Opt. Express (8)

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[Crossref] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[Crossref] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[Crossref] [PubMed]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24(12), 13121–13133 (2016).
[Crossref] [PubMed]

C. P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009).
[Crossref]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
[Crossref] [PubMed]

Y. J. He, “Novel D-shape LSPR fiber sensor based on nano-metal strips,” Opt. Express 21(20), 23498–23510 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Opt. Lett. (3)

Optik (1)

T. Peng, T. Xu, X. Wang, Z. Liu, S. Dai, S. Liu, Z. Zhao, and Z. Pan, “Simulation and fabrication of micro-structured optical fibers with extruded tubes,” Optik 127(20), 8240–8247 (2016).
[Crossref]

Photon. Technol. Lett. (2)

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” Photon. Technol. Lett. 24(20), 1823–1826 (2012).
[Crossref]

M. Belal, M. Petrovich, N. Wheeler, J. Wooler, A. Masoudi, F. Poletti, S. Alam, D. Richardson, and T. Newson, “First Demonstration of a 2μm-OTDR and Its Use in Photonic Bandgap CO2 Sensing Fiber,” Photon. Technol. Lett. 26(9), 889–892 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

S. M. Miller, S. C. Wofsy, A. M. Michalak, E. A. Kortc, A. E. Andrewsd, S. C. Biraude, E. J. Dlugokenckyd, J. Eluszkiewiczf, M. L. Fischerg, G. Janssens-Maenhouth, B. R. Milleri, J. B. Milleri, S. A. Montzkad, T. Nehrkornf, and C. Sweeneyi, “Anthropogenic emissions of methane in the United States,” Proc. Natl. Acad. Sci. 110(50), 20018–20022 (2013).
[Crossref]

Proc. SPIE (4)

H. F. Martins, D. Piote, J. Tejedor, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. Corredera, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Early detection of pipeline integrity threats using a smart fiber optic surveillance system: the PIT-STOP project,” Proc. SPIE 9634, 96347X (2015).

J. P. Dakin, “Distributed optical fiber sensors,” Proc. SPIE 1797, 76–108 (1993).
[Crossref]

H. Lehmann, H. Bartelt, R. Willsch, R. Amezcua-Correa, and Jonathan C. Knight, “Distributed gas sensor based on a photonic bandgap fiber cell with laser-drilled, lateral microchannels,” Proc. SPIE 7653, 76532W (2010).
[Crossref]

M. A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. N. Maran, “Thermal effects in high-power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
[Crossref]

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sensors (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

H. H. Qazi, A. B. B. Mohammad, and M. Akram, “Recent progress in optical chemical sensors,” Sensors 12(12), 16522–16556 (2012).
[Crossref]

Sensors Actuat B-Chem (3)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sensors Actuat B-Chem 108(1), 508–514 (2005).
[Crossref]

W. Cao and Y. Duan, “Optical fiber evanescent wave sensor for oxygen deficiency detection,” Sensors Actuat B-Chem 119(2), 363–369 (2006).
[Crossref]

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sensors Actuat B-Chem 192, 804–811 (2014).
[Crossref]

Sensors Actuat. B-Chem (1)

G. Stewart, F. A. Muhammad, and B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sensors Actuat. B-Chem 11(1), 521–524 (1993).
[Crossref]

Systems & control letters (1)

P. M. Dower, P. M. Farrell, and B C. Gibson, “Optimal refractive index design for an optical fibre-based evanescent field sensor,” Systems & control letters 56(9), 634–645 (2007).
[Crossref]

Other (7)

S. M. Klainer, “Fiber optic which is an inherent chemical sensor,” United States patent4,846,548 (July11, 1989).

T. L. Bergman, F. P. Incropera, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

P. R. Yoder, Opto-mechanical Systems Design (CRC press, 2005).

D. N. Wang, “Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining,” Imaging and Applied Optics Technical Papaers (OSA, 2012), paper STu4F1.

R. L. Woodfin, Trace Chemical Sensing of Explosives (John Wiley & Sons, 2006).
[Crossref]

A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, R. Jansen, and L. Cheng, “Fiber Bragg distributed chemical sensor,” in Proceedings of IEEE Sensors (IEEE, 2011).

I. Dicaire, “Optical Gas-Phase Frequency References Based on Photonic Crystal Technology,” (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Left: SEM photograph of the index-guiding MSF cross section structure [34]. The black bar is 20 μm long; Right: Optical Spectrum Analyzer (OSA) measurement of a wide band light source absorption in acetylene; Inset: line strength along the whole acetylene rotational-vibrational branches (HITRAN database) [34, 40].
Fig. 2
Fig. 2 P9 acetylene transition peak measured in the all-fiber gas cell using a high-resolution (10 MHz) OSA using a wide band light source at the gas cell input
Fig. 3
Fig. 3 Left: simplified cross section employed to model the steady temperature distribution of the MSF (not to scale); Right: scheme showing the general notation used for an arbitrary cylindrical shell within the structure. The heat flow across it is described by Eq. 4.
Fig. 4
Fig. 4 Scheme of the experimental setup employed. Acronyms are explained within the text.
Fig. 5
Fig. 5 General thermal behavior of the acetylene-filled MSF (at z = (1.3 ± 1) m) when the pump is: (a) switched on (laser off-resonance plus EDFA); (b) tuned on-resonance; (c) tuned off-resonance; (d) switched off (Ppump ≈ 70 mW). A smoothing filter has been applied.
Fig. 6
Fig. 6 Left: temperature changes produced by the pump being modulated around and off-resonance (Ppump ≈ 105 mW); Right: Fourier spectrum of the signals extracted from different time intervals of the temperature changes curve showing the induced modulation when it was active.
Fig. 7
Fig. 7 Heating zt map obtained when the pump is turned on (at t = 15–20 s, Ppump ≈ 105 mW): Left: on-resonance; Right: off-resonance.
Fig. 8
Fig. 8 Left: map showing the intensity of the induced thermal modulation for each driving frequency along the first meters of the fiber (Ppump ≈ 110 mW); Right: a slice of the map around the modulation frequency (0.25 Hz) traces an approximately exponential temperature decay along the fiber. The dashed lines indicate the maximum and minimum expected decays.
Fig. 9
Fig. 9 Left: thermal response at z ≈ (1.3 ± 1) m, for different pump powers, when going from on to off-resonance. Vertical lines mark the regions used to calculate each ΔTstep. A smoothing filter has been applied; Right: relation found by measuring the different steps height, and linear fit of the first 6 values.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P abs + P s = P s ,
P abs P conv ,
P conv S e = h ( T e T s ) ,
T in = T out + P abs 2 π L k log ( R out R in ) .
T core = T holes glass + Λ P abs L τ k glass i = 1 5 1 n i ,

Metrics