Abstract

A miniaturized deformed helix ferroelectric liquid crystal transducer cell was used in combination with a femtosecond laser inscribed active waveguide to realize a compact actively Q-switched laser source. The liquid crystal cell was controlled by a low-voltage frequency generator and laser pulse durations below 40 ns were demonstrated at repetition rates ranging from 0.1 kHz to 20 kHz and a maximum slope efficiency of up to 22%. This novel, integrated and low-cost laser source is a promising tool for a broad range of applications such as trace gas sensing, LIDAR, and nonlinear optics. To the best of our knowledge, this is the first demonstration of an actively Q-switched glass waveguide laser that has a user-variable repetition rate and can be fully integrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene

Yang Tan, Chen Cheng, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 22(8) 9101-9106 (2014)

Dual-loss-modulated Q-switched Tm:LuAG laser with AOM and monolayer graphene

Chao Luan, Ke Jian Yang, Jia Zhao, Sheng Zhi Zhao, Wen Chao Qiao, Tao Li, Tian Li Feng, Cheng Liu, Jun Peng Qiao, Li He Zheng, Jun Xu, Qing Guo Wang, and Liang Bi Su
Appl. Opt. 54(27) 8024-8029 (2015)

Electro-optically cavity-dumped 3  ns Tm:LuAG laser

Ye Zhang, Baoquan Yao, Tongyu Dai, Hongwei Shi, Liu Han, Yingjie Shen, and Youlun Ju
Appl. Opt. 55(11) 2848-2851 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45, 3–160 (2016).
    [Crossref]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  3. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett. 33(9), 956–958 (2008).
    [Crossref] [PubMed]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  5. G. D. Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 m single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
    [Crossref] [PubMed]
  6. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
    [Crossref] [PubMed]
  7. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
    [Crossref] [PubMed]
  8. D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff-Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [Crossref] [PubMed]
  9. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene–film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
    [Crossref] [PubMed]
  10. A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
    [Crossref] [PubMed]
  11. X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
    [Crossref]
  12. S. Wu and C. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
    [Crossref]
  13. D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
    [Crossref]
  14. H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
    [Crossref]
  15. Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E. P. Pozhidaev, V. Chigrinov, and F. Ladouceur, “Sensors at your fibre tips: a novel liquid crystal-based photonic transducer for sensing systems,” J. Lightwave Technol. 31(17), 2940–2946 (2013).
    [Crossref]
  16. J. Stöhr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98–99, 189–207 (1999).
    [Crossref]
  17. W. Koechner, Solid-State Laser Engineering (Springer, 1996), Chap. 8.
    [Crossref]
  18. G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, and M. J. Withford, “High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings,” Opt. Express 21(14), 17413–17420 (2013).
    [Crossref] [PubMed]
  19. C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. Rabes, J. R. V. de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
    [Crossref]
  20. M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D. Yeom, C. Kraenkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
    [Crossref]

2016 (4)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45, 3–160 (2016).
[Crossref]

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
[Crossref]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. Rabes, J. R. V. de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as satuable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
[Crossref]

M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D. Yeom, C. Kraenkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
[Crossref]

2015 (1)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

2013 (3)

2012 (2)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

1999 (1)

J. Stöhr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98–99, 189–207 (1999).
[Crossref]

1998 (1)

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

1996 (2)

D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

1989 (1)

S. Wu and C. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

Ahn, K. J.

Ams, M.

Baek, I. H.

Beecher, S. J.

Brodzeli, Z.

Brown, G.

Calmano, T.

Cerullo, G.

Chen, F.

Cheng, C.

Chigrinov, V.

Chiodo, N.

Choi, S. Y.

Davis, K. M.

de Aldana, J. R. V.

Dekker, P.

Ebendorff-Heidepriem, H.

Eichler, H. J.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
[Crossref]

Ferrari, A. C.

Festa, A.

Fuerbach, A.

Grebe, D.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
[Crossref]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45, 3–160 (2016).
[Crossref]

Gross, S.

Guo, Q.

Guo, Z.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
[Crossref]

Hasan, T.

Hirao, K.

Iryanto, I.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

Jaque, D.

Jiang, X.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
[Crossref]

Kar, A. K.

Khrushchev, I.

Killi, A.

Kim, M. H.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1996), Chap. 8.
[Crossref]

Kopf, D.

Kraenkel, C.

Ladouceur, F.

Lancaster, D. G.

Laporta, P.

Lederer, M.

Lee, B. J.

Lidorikis, E.

Liu, H.

Macdonald, R.

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
[Crossref]

Marshall, G. D.

Mary, R.

Michie, A.

Milana, S.

Mitchell, J.

Miura, K.

Monro, T. M.

Morgner, U.

Nie, W.

Obraztsov, P. A.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

Ohara, S.

Okhrimchuk, A. G.

Osellame, R.

Palmer, G.

Piper, J. A.

Popa, D.

Pozhidaev, E. P.

Rabes, B.

Rotermund, F.

Samant, M. G.

J. Stöhr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98–99, 189–207 (1999).
[Crossref]

Shang, Z.

Shestakov, A. V.

Silvestri, L.

Stöhr, J.

J. Stöhr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98–99, 189–207 (1999).
[Crossref]

Sugimoto, N.

Sun, Z.

Svelto, O.

Taccheo, S.

Tan, Y.

Thomson, R. R.

Torrisi, F.

Valle, G. D.

Withford, M. J.

Wu, C.

S. Wu and C. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

Wu, S.

S. Wu and C. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

Yeom, D.

Zhang, H.

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
[Crossref]

Ann. Phys. (1)

X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528(7–8), 543–550 (2016).
[Crossref]

J. Appl. Phys. (1)

S. Wu and C. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

J. Electron. Spectrosc. Relat. Phenom. (1)

J. Stöhr and M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” J. Electron. Spectrosc. Relat. Phenom. 98–99, 189–207 (1999).
[Crossref]

J. Lightwave Technol. (1)

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (2)

D. Grebe, R. Macdonald, and H. J. Eichler, “Cholesteric liquid crystal mirrors for pulsed solid-state lasers,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 282(1), 309–314 (1996).
[Crossref]

H. J. Eichler, D. Grebe, I. Iryanto, and R. Macdonald, “Active Q-Switching of a solid state laser using nematic liquid crystal modulatotors,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 320(1), 89–99 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (2)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45, 3–160 (2016).
[Crossref]

Sci. Rep. (1)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer, 1996), Chap. 8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photograph (left) and schematic drawing (right) of the commercial available liquid crystal cell (Zedelef Pty Ltd). The liquid crystal layer is sandwiched between two electrodes (ITO) and a rubbed polyimide layer aligns the molecules of the liquid crystal layer. The laser beam enters the cell from the bottom side and is reflected off a gold layer that is coated on the opposite side of the cell [15].

Fig. 2
Fig. 2

(a) Laser dynamics of a Q-switched laser incorporating a slow modulator with τ = 2 μs. The intracavity Q-switched loss (red line) is switched from a high to a low loss state. A pulse builds up (black line) and depletes the inversion (blue line) but the slow modulator results in multiple pulsing. (b) A single pulse can be selected if the losses are switch back to a high state once the first pulse is emitted.

Fig. 3
Fig. 3

Simulated pulse width as a function of cavity length, modulation depth and switching time. (a) The smallest possible pulse duration (dark blue contour) is reached by maximizing the modulation depth and minimizing the cavity length; (b) Minimizing the switching time (corresponding to a faster switch) and minimizing the cavity length results in the shortest possible pulse duration; Region 1: single pulsing regime, switching time does not affect the pulse width; Region 2: multiple pulse regime, pulse width depends on switching time.

Fig. 4
Fig. 4

Schematic of the setup used to characterize the liquid crystal cell. A polarized laser with a wavelength of 1064 nm is reflected onto the liquid crystal cell by a polarizing beam splitter (PBS). After reflection off the cell, the beam that is now transmitted by the PBS is detected by a photodiode.

Fig. 5
Fig. 5

Normalized cavity losses as a function of time (red, grey and black lines) for different amplitudes of the applied voltage (arbitrary units) at a frequency of 5 kHz. In grey, the transition between the minimum and maximum recorded voltage stages is shown. We find that the transition between the two stages is linear. The 3.2 μm thick cell (a) results in a minimum switching time τ = 13.8 μs whereas the 9.0 μm thick cell (b) results in a greatly reduced switching time of 2.0 μs. The blue line shows the voltage applied to the LC cell as a function of time.

Fig. 6
Fig. 6

(a) Modulation depth for a fixed voltage amplitude of 84.3 V as a function of frequency. The solid line (red) is a fit indicating a linear drop in modulation depth for frequencies above 50 kHz. (b) Schematic of the laser setup: The resonator was formed by a dichroic in-coupling mirror butt-coupled to the waveguide and a short extended cavity including the liquid crystal cell. In this setup, the polarizing beam splitter in combination with the liquid crystal cell acts as a actively-controlled variable output-coupling mirror.

Fig. 7
Fig. 7

Average output power as a function of absorbed pump power for the (a) 3.2 μm and the (b) 9.0 μm thick cell: The total birefringence introduced by the liquid crystal cell increases for a higher applied voltage and a thicker cell, resulting in a faster Q-switch and thus an increased slope efficiency.

Fig. 8
Fig. 8

Pulse width (blue) and pulse peak power (red) as a function of the applied voltage for the (a) 3.2 μm thick cell and the (b) 9.0 μm thick cell.

Fig. 9
Fig. 9

Average output power as a function of repetition rate for the 9.0 μm thick cell. The solid line (red) shows a quadratic fit to the experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( E ) = sin 2 [ 2 π λ d Δ n ( E 2 ) ] sin 2 [ 2 β 2 Ω ( E ) ] ,
d φ d t = φ ( t ) c 2 L [ 2 σ n ( t ) l c q ( t ) δ ]
d n d t = σ c n ( t ) φ ( t )
q ( t ) = e t τ

Metrics