Abstract

We present a novel method for the development of a micro lenslets hexagonal array. We use gradient index (GRIN) micro lenses where the variation of the refraction index is achieved with a structure of nanorods made of 2 types of glasses. To develop the GRIN micro lens array, we used a modified stack-and-draw technology which was originally applied for the fabrication of photonic crystal fibers. This approach results in a completely flat element that is easy to integrate with other optical components and can be effectively used in high refractive index medium as liquids. As a proof-of-concept of the method we present a hexagonal array of 469 GRIN micro lenses with a diameter of 20 µm each and 100% fill factor. The GRIN lens array is further used to build a Shack-Hartmann detector for measuring wavefront distortion. A 50 lens/mm sampling density is achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light field camera based on hexagonal array of flat-surface nanostructured GRIN lenses

Rafal Kasztelanic, Dariusz Pysz, Ryszard Stepien, and Ryszard Buczynski
Opt. Express 27(24) 34985-34996 (2019)

Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device

Brian Vohnsen, Alessandra Carmichael Martins, Salihah Qaysi, and Najnin Sharmin
Appl. Opt. 57(22) E199-E204 (2018)

Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations

Maham Aftab, Heejoo Choi, Rongguang Liang, and Dae Wook Kim
Opt. Express 26(26) 34428-34441 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Troy, Shack-Hartmann and Interferometric Hybrid Wavefront Sensor (BiblioScholar, 2012).
  2. M. Born and E. Wolf, Principles of Optics, 7thed. (Cambridge University Press, 1999).
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
    [Crossref]
  4. F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
    [Crossref]
  5. R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
    [Crossref]
  6. R. Kasztelanic and A. Sagan, “Semiderivative real filter for microoptical elements quality control,” Opt. Rev. 16(3), 252–256 (2009).
    [Crossref]
  7. R. Kasztelanic, “Amplitude filter and Zernike polynomial expansion method for quality control of microlens arrays,” Appl. Opt. 49(28), 5486–5492 (2010).
    [Crossref] [PubMed]
  8. S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).
  9. P. Mercère, P. Zeitoun, M. Idir, S. Le Pape, D. Douillet, X. Levecq, G. Dovillaire, S. Bucourt, K. A. Goldberg, P. P. Naulleau, and S. Rekawa, “Hartmann wave-front measurement at 13.4 nm with lambdaEUV/120 accuracy,” Opt. Lett. 28(17), 1534–1536 (2003).
    [Crossref] [PubMed]
  10. E. Li, Y. Dai, H. Wang, and Y. Zhang, “Application of eigenmode in the adaptive optics system based on a micromachined membrane deformable mirror,” Appl. Opt. 45(22), 5651–5656 (2006).
    [Crossref] [PubMed]
  11. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: Applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
    [Crossref] [PubMed]
  12. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
    [Crossref] [PubMed]
  13. Spiricon, ed., Hartmann Wavefront Analyzer Tutorial (Spiricon, 2004).
  14. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
    [Crossref]
  15. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, “Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29(23), 2743–2745 (2004).
    [Crossref] [PubMed]
  16. K. L. Baker and M. M. Moallem, “Iteratively weighted centroiding for Shack-Hartmann wave-front sensors,” Opt. Express 15(8), 5147–5159 (2007).
    [Crossref] [PubMed]
  17. C. Leroux and C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18(2), 1197–1206 (2010).
    [Crossref] [PubMed]
  18. J. Vargas, R. Restrepo, J. C. Estrada, C. O. Sorzano, Y. Z. Du, and J. M. Carazo, “Shack-Hartmann centroid detection using the spiral phase transform,” Appl. Opt. 51(30), 7362–7367 (2012).
    [Crossref] [PubMed]
  19. W. H. Southwell, “Wavefront estimation from wavefront slope measurements,” J. Opt. Soc. Am. 70(8), 998–1006 (1980).
    [Crossref]
  20. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phasedifference measurements,” J. Opt. Soc. Am. 67(3), 370–375 (1977).
    [Crossref]
  21. C. R. Vogel, “Sparse matrix methods for wavefront reconstruction, revisited,” Adv. in Adaptive Opt. 5490, 1327–1335 (2004).
    [Crossref]
  22. K. R. Freischlad and C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3(11), 1852–1861 (1986).
    [Crossref]
  23. C. R. Vogel and Q. Yang, “Multigrid algorithm for least-squares wavefront reconstruction,” Appl. Opt. 45(4), 705–715 (2006).
    [Crossref] [PubMed]
  24. P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).
  25. E. Thiébaut and M. Tallon, “Fast minimum variance wavefront reconstruction for extremely large telescopes,” J. Opt. Soc. Am. A 27(5), 1046–1059 (2010).
    [Crossref] [PubMed]
  26. M. Rosensteiner, “Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes,” J. Opt. Soc. Am. A 28(10), 2132–2138 (2011).
    [Crossref] [PubMed]
  27. C. C. de Visser and M. Verhaegen, “Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines,” J. Opt. Soc. Am. A 30(1), 82–95 (2013).
    [Crossref] [PubMed]
  28. A. Polo, V. Kutchoukov, F. Bociort, S. F. Pereira, and H. P. Urbach, “Determination of wavefront structure for a Hartmann Wavefront Sensor using a phase-retrieval method,” Opt. Express 20(7), 7822–7832 (2012).
    [Crossref] [PubMed]
  29. J. Vargas, R. Restrepo, and T. Belenguer, “Shack-Hartmann spot dislocation map determination using an optical flow method,” Opt. Express 22(2), 1319–1329 (2014).
    [Crossref] [PubMed]
  30. R. Fontaine, “The state-of-the-art of mainstream CMOS image sensors,” in Proceedings IEEE Xplore Conference: 37th European Solid State Device Research Conference, ESSDERC (IEEE 2007).
  31. C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, Berlin, 2002).
  32. C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
    [Crossref]
  33. R. W. Gilsdorf and J. C. Palais, “Single-mode fiber coupling efficiency with graded-index rod lenses,” Appl. Opt. 33(16), 3440–3445 (1994).
    [Crossref] [PubMed]
  34. A. G. Mignani, A. Mencaglia, M. Brenci, and A. Scheggi, “Radially Gradient-Index Lenses: Applications to Fiber Optic Sensors,” in Diffractive Optics and Optical Microsystems, S. Martellucci, A. N. Chester ed. (Springer US, 311–325, 1997).
  35. L. Fu, X. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
    [Crossref] [PubMed]
  36. J. R. Hensler, “Method of Producing a Refractive Index Gradient in Glass,” U.S. Patent 3,873,408 (25 Mar. 1975).
  37. J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses Alexandria Va (2013).
  38. GRINTECH GmbH website: www.grintech.de .
  39. Y. Huang and S. T. Ho, “Superhigh numerical aperture (NA > 1.5) micro gradient-index lens based on a dual-material approach,” Opt. Lett. 30(11), 1291–1293 (2005).
    [Crossref] [PubMed]
  40. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref] [PubMed]
  41. T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
    [Crossref] [PubMed]
  42. R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
    [Crossref] [PubMed]
  43. F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
    [Crossref] [PubMed]
  44. J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
    [Crossref]
  45. J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
    [Crossref] [PubMed]
  46. A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
    [Crossref] [PubMed]
  47. J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
    [Crossref] [PubMed]
  48. A. J. Waddie, R. Buczynski, F. Hudelist, J. M. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
    [Crossref]
  49. R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
    [Crossref]
  50. J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
    [Crossref]
  51. M. Harker and P. J. O’Leary, “Regularized Reconstruction of a Surface from its Measured Gradient Field,” J. Math. Imaging Vis. 51(1), 46–70 (2015).
    [Crossref]

2016 (1)

2015 (4)

2014 (2)

2013 (1)

2012 (4)

2011 (2)

2010 (6)

2009 (2)

R. Kasztelanic and A. Sagan, “Semiderivative real filter for microoptical elements quality control,” Opt. Rev. 16(3), 252–256 (2009).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

2008 (3)

P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (2)

2004 (2)

2003 (2)

2002 (2)

R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
[Crossref]

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

1994 (1)

1991 (1)

F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
[Crossref]

1986 (1)

1980 (1)

1977 (1)

Agathoklis, P.

P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).

Baker, K. L.

Bao, C.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Belenguer, T.

Berghmans, F.

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

Bociort, F.

Booth, M. J.

M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
[Crossref]

Borzycki, K.

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

Bradley, C.

P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).

Bucourt, S.

Buczynski, R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[Crossref] [PubMed]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref] [PubMed]

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. M. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref] [PubMed]

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

Carazo, J. M.

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Cimek, J.

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Dai, Y.

Dainty, C.

de Visser, C. C.

Diolaiti, E.

R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
[Crossref]

Doel, P.

S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).

Douillet, D.

Dovillaire, G.

Drexler, W.

Du, Y. Z.

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Estrada, J. C.

Fernandez, E. J.

Filipkowski, A.

Flores-Arias, M. T.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Freischlad, K. R.

Fried, D. L.

Fu, L.

Fusco, T.

Gan, X.

Gilsdorf, R. W.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Goldberg, K. A.

Gómez-Reino, C.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Graves, J. E.

F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
[Crossref]

Greenaway, A.

S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).

Gu, M.

Hampton, P. J.

P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).

Harker, M.

M. Harker and P. J. O’Leary, “Regularized Reconstruction of a Surface from its Measured Gradient Field,” J. Math. Imaging Vis. 51(1), 46–70 (2015).
[Crossref]

Hermann, B.

Ho, S. T.

Huang, Y.

Hudelist, F.

Idir, M.

Kasztelanic, R.

Klimczak, M.

Koliopoulos, C. L.

Kujawa, I.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

Kutchoukov, V.

Le Pape, S.

Leroux, C.

Levecq, X.

Li, E.

Love, G.

S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).

Martynkien, T.

McCarthy, A.

Mercère, P.

Michau, V.

Moallem, M. M.

Naulleau, P. P.

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Nicolle, M.

Northcott, M.

F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
[Crossref]

Nowosielski, J.

Nowosielski, J. M.

O’Leary, P. J.

M. Harker and P. J. O’Leary, “Regularized Reconstruction of a Surface from its Measured Gradient Field,” J. Math. Imaging Vis. 51(1), 46–70 (2015).
[Crossref]

Palais, J. C.

Pereira, S. F.

Perez, M. V.

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Piechal, B.

Pniewski, J.

Polo, A.

Povazay, B.

Pysz, D.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[Crossref] [PubMed]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref] [PubMed]

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. M. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Ragazzoni, R.

R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
[Crossref]

Rekawa, S.

Restrepo, R.

Roddier, F.

F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
[Crossref]

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Rosensteiner, M.

Rousset, G.

Sagan, A.

R. Kasztelanic and A. Sagan, “Semiderivative real filter for microoptical elements quality control,” Opt. Rev. 16(3), 252–256 (2009).
[Crossref]

Schwertner, M.

M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
[Crossref]

Siwicki, B.

Sorzano, C. O.

Southwell, W. H.

Stefaniuk, T.

Stepien, R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

T. Martynkien, D. Pysz, R. Stępień, and R. Buczyński, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39(8), 2342–2345 (2014).
[Crossref] [PubMed]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref] [PubMed]

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. M. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Stepniewski, G.

Taghizadeh, M. R.

J. Pniewski, R. Kasztelanic, J. M. Nowosielski, A. Filipkowski, B. Piechal, A. J. Waddie, D. Pysz, I. Kujawa, R. Stepien, M. R. Taghizadeh, and R. Buczynski, “Diffractive optics development using a modified stack-and-draw technique,” Appl. Opt. 55(18), 4939–4945 (2016).
[Crossref] [PubMed]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref] [PubMed]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref] [PubMed]

A. J. Waddie, R. Buczynski, F. Hudelist, J. M. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses,” Opt. Lett. 35(2), 130–132 (2010).
[Crossref] [PubMed]

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

Tallon, M.

Thiébaut, E.

Thienpont, H.

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

Unterhuber, A.

Urbach, H. P.

Vabre, L.

Vargas, J.

Verhaegen, M.

Vernet, E.

R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
[Crossref]

Vogel, C. R.

C. R. Vogel and Q. Yang, “Multigrid algorithm for least-squares wavefront reconstruction,” Appl. Opt. 45(4), 705–715 (2006).
[Crossref] [PubMed]

C. R. Vogel, “Sparse matrix methods for wavefront reconstruction, revisited,” Adv. in Adaptive Opt. 5490, 1327–1335 (2004).
[Crossref]

Waddie, A.

Waddie, A. J.

Wang, H.

Welch, S.

S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
[Crossref]

Yang, Q.

Zeitoun, P.

Zhang, Y.

Adv. in Adaptive Opt. (1)

C. R. Vogel, “Sparse matrix methods for wavefront reconstruction, revisited,” Adv. in Adaptive Opt. 5490, 1327–1335 (2004).
[Crossref]

Appl. Opt. (7)

Astr. Geoph. (1)

S. Welch, A. Greenaway, P. Doel, and G. Love, “Smart optics in astronomy and space,” Astr. Geoph. 44(1), 26–29 (2003).

IEEE J. of Selected Topics in Sig. Proc. (1)

P. J. Hampton, P. Agathoklis, and C. Bradley, “A New Wave-Front Reconstruction Method for Adaptive Optics Systems Using Wavelets,” IEEE J. of Selected Topics in Sig. Proc. 2, 781–792 (2008).

J. Math. Imaging Vis. (1)

M. Harker and P. J. O’Leary, “Regularized Reconstruction of a Surface from its Measured Gradient Field,” J. Math. Imaging Vis. 51(1), 46–70 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

Laser Photonics Rev. (1)

C. Gómez-Reino, M. V. Perez, C. Bao, and M. T. Flores-Arias, “Design of GRIN optical components for coupling and interconnects,” Laser Photonics Rev. 2(3), 203–215 (2008).
[Crossref]

Laser Phys. (1)

R. Buczynski, I. Kujawa, R. Kasztelanic, D. Pysz, K. Borzycki, F. Berghmans, H. Thienpont, and R. Stepien, “Supercontinuum generation in all-solid photonic crystal fiber with low index core,” Laser Phys. 22(4), 784–790 (2012).
[Crossref]

Opt. Commun. (3)

R. Ragazzoni, E. Diolaiti, and E. Vernet, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208(1–3), 51–60 (2002).
[Crossref]

M. Schwertner, M. J. Booth, and T. Wilson, “Wavefront sensing based on rotated lateral shearing interferometry,” Opt. Commun. 281(2), 210–216 (2008).
[Crossref]

J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Opt. Commun. 283(9), 1938–1944 (2010).
[Crossref]

Opt. Express (8)

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: Applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
[Crossref] [PubMed]

K. L. Baker and M. M. Moallem, “Iteratively weighted centroiding for Shack-Hartmann wave-front sensors,” Opt. Express 15(8), 5147–5159 (2007).
[Crossref] [PubMed]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

C. Leroux and C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18(2), 1197–1206 (2010).
[Crossref] [PubMed]

J. Vargas, R. Restrepo, and T. Belenguer, “Shack-Hartmann spot dislocation map determination using an optical flow method,” Opt. Express 22(2), 1319–1329 (2014).
[Crossref] [PubMed]

A. Polo, V. Kutchoukov, F. Bociort, S. F. Pereira, and H. P. Urbach, “Determination of wavefront structure for a Hartmann Wavefront Sensor using a phase-retrieval method,” Opt. Express 20(7), 7822–7832 (2012).
[Crossref] [PubMed]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref] [PubMed]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. Express (2)

Opt. Rev. (1)

R. Kasztelanic and A. Sagan, “Semiderivative real filter for microoptical elements quality control,” Opt. Rev. 16(3), 252–256 (2009).
[Crossref]

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Publ. of Astr. Soc. of the Pacific (1)

F. Roddier, M. Northcott, and J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. of Astr. Soc. of the Pacific 103, 131–149 (1991).
[Crossref]

Other (9)

R. E. Troy, Shack-Hartmann and Interferometric Hybrid Wavefront Sensor (BiblioScholar, 2012).

M. Born and E. Wolf, Principles of Optics, 7thed. (Cambridge University Press, 1999).

Spiricon, ed., Hartmann Wavefront Analyzer Tutorial (Spiricon, 2004).

A. G. Mignani, A. Mencaglia, M. Brenci, and A. Scheggi, “Radially Gradient-Index Lenses: Applications to Fiber Optic Sensors,” in Diffractive Optics and Optical Microsystems, S. Martellucci, A. N. Chester ed. (Springer US, 311–325, 1997).

J. R. Hensler, “Method of Producing a Refractive Index Gradient in Glass,” U.S. Patent 3,873,408 (25 Mar. 1975).

J. Teichman, J. Holzer, B. Balko, B. Fisher, and L. Buckley, “Gradient Index Optics at DARPA,” Institute For Defense Analyses Alexandria Va (2013).

GRINTECH GmbH website: www.grintech.de .

R. Fontaine, “The state-of-the-art of mainstream CMOS image sensors,” in Proceedings IEEE Xplore Conference: 37th European Solid State Device Research Conference, ESSDERC (IEEE 2007).

C. Gómez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (Springer, Berlin, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Scheme of the Shack-Hartmann setup: a) determining the shift of the spot for a single GRIN lens, b) a full Shack-Hartmann setup.
Fig. 2
Fig. 2 Schematic of the modified stack-and-draw technique: a) preform stacked with two kinds of glass, b) drawing hexagonal preform, c) stack array of GRIN lenlets, d) drawing the final structure, e) cut and polished array of GRIN lenslets.
Fig. 3
Fig. 3 The refractive index, the refractive index difference Δn and the ratio of nNC21/nF2 as a function of the wavelength for the NC21 and F2 glasses.
Fig. 4
Fig. 4 Design of a preform for a GRIN lens composed of 7651 rods made from two glasses.
Fig. 5
Fig. 5 Array of micro GRIN lenslets fabricated by using stack-and-draw technique.
Fig. 6
Fig. 6 GRIN lenslet array: a) imaging of the test object with a resolution 20.16 pl/mm (3rd element of 4th group in the 1951 USAF Resolution Test Targets), b) light intensity on focal plane for a non-distorted wavefront.
Fig. 7
Fig. 7 Scheme of the Shack-Hartmann sensor setup: a) compact setup, b) setup witch microscope objective.
Fig. 8
Fig. 8 Scheme of finding the center spot for one lens: a) search area (red circle – geometrical center, black cross – found spot center), b) adjusting 2D Gaussian distribution.
Fig. 9
Fig. 9 Results of testing wavefront distortion for single refractive lens: a) light intensity of distorted wavefront on CCD plane, b) map of shifts in 469 points, c) reconstructed shape of the wavefront distortion, d) map of relative reconstruction error.
Fig. 10
Fig. 10 Measurement results of wavefront distortion for an array of refractive microlenses: a) comparison of the scale of the measured element with a GRIN lenslet array, b) light intensity of distorted wavefront on CCD plane, c) map of shifts in 469 points, d) reconstructed shape of the wavefront distortion, e) map of relative reconstruction error for four central microlenses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ x l = x l0 x l = κ x φ( x l , y l ) x Δ y l = y l0 y l = κ y φ( x l , y l ) y
n= n F2 ( 1 A 2 r 2 )
A=2 Δn n F2 =2 n NC21 n F2
f= 1 n F2 A sin( t A )
Δφ= φ 0 φ m

Metrics