Abstract

Evanescent-field based methods such as surface plasmon resonance (SPR) have been used very effectively for label-free imaging of microscopic biological material in close proximity to a sensing surface. However, the shallow probing depth of SPR (typically less than ~200 nm) can be problematic when imaging relatively thick biological objects such as cells or bacteria. In this paper, we demonstrate how metal-clad waveguides (MCWG) can be used to achieve deeper probing depth compared to SPR while maintaining good imaging spatial resolution. Comparative numerical simulations of imaging spatial resolution versus probing depth are shown for a number of common SPR, long-range SPR, and MCWG configurations, demonstrating that MCWG offer the best compromise between resolution and depth for imaging thick biological objects. Experimental results of synthetic target and live cell imaging are shown that validate the numerical simulations and demonstrate the capabilities of the method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design

Frederic A. Banville, Julien Moreau, Mitradeep Sarkar, Mondher Besbes, Michael Canva, and Paul G. Charette
Opt. Express 26(8) 10616-10630 (2018)

Spatial resolution in prism-based surface plasmon resonance microscopy

Loïc Laplatine, Loïc Leroy, Roberto Calemczuk, Dieudonné Baganizi, Patrice N. Marche, Yoann Roupioz, and Thierry Livache
Opt. Express 22(19) 22771-22785 (2014)

Metal-clad waveguide sensor using a left-handed material as a core layer

Hani M. Kullab, Sofyan A. Taya, and Taher M. El-Agez
J. Opt. Soc. Am. B 29(5) 959-964 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  4. A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
    [Crossref] [PubMed]
  5. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
    [Crossref] [PubMed]
  6. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [Crossref] [PubMed]
  7. F. A. Banville, T. Söllradl, P.-J. Zermatten, M. Grandbois, and P. G. Charette, “Improved resolution in SPR and MCWG microscopy by combining images acquired with distinct mode propagation directions,” Opt. Lett. 40(7), 1165–1168 (2015).
    [Crossref] [PubMed]
  8. D. J. Kim and D. Kim, “Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution,” J. Opt. Soc. Am. B 27(6), 1252 (2010).
    [Crossref]
  9. Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
    [Crossref] [PubMed]
  10. W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
    [Crossref] [PubMed]
  11. A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
    [Crossref] [PubMed]
  12. P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
    [Crossref] [PubMed]
  13. V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
    [Crossref]
  14. R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
    [Crossref]
  15. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
    [Crossref] [PubMed]
  16. A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
    [Crossref] [PubMed]
  17. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
    [Crossref] [PubMed]
  18. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
    [Crossref]
  19. L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
    [Crossref]
  20. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  21. L. Convert, V. Aimez, P. G. Charette, and R. Lecomte, “Rapid prototyping of integrated microfluidic devices for combined radiation detection and plasma separation,” in MNRC 2008 - 1st Microsystems and Nanoelectronics Research Conference (IEEE, 2008), pp. 105–108.
    [Crossref]
  22. J. Moreau, J.-P. Cloarec, P. Charette, M. Goossens, M. Canva, and T. Vo-Dinh, “Chapter 7. Surface Plasmon Resonance Imaging Sensors: Principle, Development, and Biomedical Applications—Example of Genotyping,” in Biomedical Diagnostics, T. Vo-Dinh, ed. (CRC Press, 2014), pp. 199–264.
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [Crossref] [PubMed]
  25. M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolithography 7, 33010 (2008).
  26. H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
    [Crossref] [PubMed]
  27. Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80(3), 1557–1567 (2001).
    [Crossref] [PubMed]
  28. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
    [Crossref] [PubMed]
  29. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
    [Crossref]
  30. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
    [Crossref]
  31. J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
    [Crossref]
  32. K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
    [Crossref]
  33. V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.
  34. B. Rothenhäusler and W. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52(19), 1554–1556 (1988).
    [Crossref]
  35. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
    [Crossref]
  36. V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
    [Crossref] [PubMed]

2016 (1)

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

2015 (1)

2014 (3)

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
[Crossref] [PubMed]

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

2013 (2)

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

2012 (3)

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

2010 (4)

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

D. J. Kim and D. Kim, “Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution,” J. Opt. Soc. Am. B 27(6), 1252 (2010).
[Crossref]

2008 (1)

K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
[Crossref]

2007 (3)

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

2006 (1)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

2005 (3)

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

2001 (1)

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80(3), 1557–1567 (2001).
[Crossref] [PubMed]

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

1988 (1)

B. Rothenhäusler and W. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52(19), 1554–1556 (1988).
[Crossref]

1974 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Aimez, V.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Aroeti, B.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Asiri, H.

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Baganizi, D.

Banville, F. A.

Barbillon, G.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Bartenlian, B.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Berini, P.

Blanco Carballo, V. M.

V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.

Bryche, J.-F.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Calemczuk, R.

Canva, M.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

Chabot, V.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Charette, P. G.

F. A. Banville, T. Söllradl, P.-J. Zermatten, M. Grandbois, and P. G. Charette, “Improved resolution in SPR and MCWG microscopy by combining images acquired with distinct mode propagation directions,” Opt. Lett. 40(7), 1165–1168 (2015).
[Crossref] [PubMed]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Chen, K.-S.

K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
[Crossref]

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cloarec, J. P.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Convert, L.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Corn, R. M.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Daimon, M.

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Davidov, D.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Davidson, M. W.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Dostálek, J.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Gillibert, R.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Gogol, P.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Golosovsky, M.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Gould, H. J.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Grandbois, M.

F. A. Banville, T. Söllradl, P.-J. Zermatten, M. Grandbois, and P. G. Charette, “Improved resolution in SPR and MCWG microscopy by combining images acquired with distinct mode propagation directions,” Opt. Lett. 40(7), 1165–1168 (2015).
[Crossref] [PubMed]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Greaves, M. W.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Griesser, H.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Halter, M.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Hamel, R.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Hess, H. F.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Hide, M.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Hiragun, T.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Horvath, R.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Huang, C.-J.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaminow, I. P.

Kanchanawong, P.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Kaneko, S.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Kim, D.

Kim, D. J.

Kim, M. G.

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

B. Rothenhäusler and W. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52(19), 1554–1556 (1988).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Krupin, O.

Lamy de la Chapelle, M.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Laplatine, L.

Lecomte, R.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Lee, H. J.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Leroy, L.

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

Lirtsman, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Liu, Q.

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

Livache, T.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Maillart, E.

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

Mammel, W. L.

Marche, P. N.

Masumura, A.

Méjard, R.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Melai, J.

V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.

Miron, Y.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Moreau, J.

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Ong, B. H.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Ou, K.-S.

K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
[Crossref]

Pasapera, A. M.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Pedersen, H. C.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Peterson, A. W.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Plant, A. L.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Pyo, H. B.

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Ramko, E. B.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52(19), 1554–1556 (1988).
[Crossref]

Roupioz, Y.

Salamon, Z.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80(3), 1557–1567 (2001).
[Crossref] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Salm, C.

V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.

Schmitz, J.

V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.

Sereda, A.

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

Shin, Y. B.

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

Shtengel, G.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Skivesen, N.

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

Söllradl, T.

Tait, R. N.

Tao, N.

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

Thierry, B.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Tjin, S. C.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

Tollin, G.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80(3), 1557–1567 (2001).
[Crossref] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Tona, A.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Wang, C.

Wang, S.

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

Wark, A. W.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Waterman, C. M.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Weber, H. P.

Wu, J.

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

Yan, H.-Y.

K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
[Crossref]

Yanase, Y.

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

Yashunsky, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

Yoon, H. C.

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Yuan, X.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

Zermatten, P. J.

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Zermatten, P.-J.

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Anal. Chem. (2)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[Crossref] [PubMed]

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77(13), 3904–3907 (2005).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. Rothenhäusler and W. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52(19), 1554–1556 (1988).
[Crossref]

Biophys. J. (3)

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, “Real-time monitoring of epithelial cell-cell and cell-substrate interactions by infrared surface plasmon spectroscopy,” Biophys. J. 99(12), 4028–4036 (2010).
[Crossref] [PubMed]

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape,” Biophys. J. 80(3), 1557–1567 (2001).
[Crossref] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73(5), 2791–2797 (1997).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

Y. Yanase, T. Hiragun, S. Kaneko, H. J. Gould, M. W. Greaves, and M. Hide, “Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 26(2), 674–681 (2010).
[Crossref] [PubMed]

A. Sereda, J. Moreau, M. Canva, and E. Maillart, “High performance multi-spectral interrogation for surface plasmon resonance imaging sensors,” Biosens. Bioelectron. 54, 175–180 (2014).
[Crossref] [PubMed]

BMC Cell Biol. (1)

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15(1), 35 (2014).
[Crossref] [PubMed]

Colloids Surfaces A Physicochem. Eng. Asp. (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (2)

W. Wang, S. Wang, Q. Liu, J. Wu, and N. Tao, “Mapping single-cell-substrate interactions by surface plasmon resonance microscopy,” Langmuir 28(37), 13373–13379 (2012).
[Crossref] [PubMed]

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, “Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions,” Langmuir 21(1), 166–171 (2005).
[Crossref] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Nature (1)

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature 468(7323), 580–584 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mater. 35(12), 2507–2513 (2013).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Plasmonics (1)

J.-F. Bryche, R. Gillibert, G. Barbillon, P. Gogol, J. Moreau, M. Lamy de la Chapelle, B. Bartenlian, and M. Canva, “Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing,” Plasmonics 11(2), 601–608 (2016).
[Crossref]

Sens. Actuators B Chem. (4)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114(2), 1028–1034 (2006).
[Crossref]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem. 106(2), 668–676 (2005).
[Crossref]

L. Convert, V. Chabot, P. J. Zermatten, R. Hamel, J. P. Cloarec, R. Lecomte, V. Aimez, and P. G. Charette, “Passivation of KMPR microfluidic channels with bovine serum albumin (BSA) for improved hemocompatibility characterized with metal-clad waveguides,” Sens. Actuators B Chem. 173, 447–454 (2012).
[Crossref]

Strain (1)

K.-S. Ou, H.-Y. Yan, and K.-S. Chen, “Mechanical characterization of KMPR by nano-indentation for MEMS applications,” Strain 44(3), 267–271 (2008).
[Crossref]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. B 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (4)

V. M. Blanco Carballo, J. Melai, C. Salm, and J. Schmitz, “Moisture resistance of SU-8 and KMPR as structural material for integrated gaseous detectors,” in 11th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors (Elsevier, 2008), pp. 395–398.

M. K. Yang, R. H. French, and E. W. Tokarsky, “Optical properties of Teflon® AF amorphous fluoropolymers,” J. Micro/Nanolithography 7, 33010 (2008).

L. Convert, V. Aimez, P. G. Charette, and R. Lecomte, “Rapid prototyping of integrated microfluidic devices for combined radiation detection and plasma separation,” in MNRC 2008 - 1st Microsystems and Nanoelectronics Research Conference (IEEE, 2008), pp. 105–108.
[Crossref]

J. Moreau, J.-P. Cloarec, P. Charette, M. Goossens, M. Canva, and T. Vo-Dinh, “Chapter 7. Surface Plasmon Resonance Imaging Sensors: Principle, Development, and Biomedical Applications—Example of Genotyping,” in Biomedical Diagnostics, T. Vo-Dinh, ed. (CRC Press, 2014), pp. 199–264.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Mode attenuation distance (imaging spatial resolution) vs penetration depth in the dielectric for MCWG TM0 modes (solid colored lines), SPR (solid gray lines), and LR-SPR (hashed grey lines). The diagonal arrow in the background indicates the direction of improving performance for imaging of thick objects such as cells, i.e. decreasing attenuation distance (better resolution) and increasing penetration depth. Data calculated using FIMMWAVE. MCWG: TM0 modes (colored curves) at wavelengths of 470 nm, 533 nm, 633 nm, and 830 nm, over a range of KMPR core thicknesses. Markers indicate core thickness intervals of 10 nm, starting at cutoff (thinnest core supporting a guided mode, rightmost point on each plot); SPR: Au/water and Ag/water interface surface modes over a range of wavelengths (Au: 555 nm – 900 nm, Ag: 470 nm - 900 nm). Black markers indicate wavelength intervals of 50 nm, while colored markers indicate the wavelengths corresponding to the four MCWG curves (470 nm, 533 nm, 633 nm, 830 nm); LR-SPR: symmetric mode in a Teflon/Au/water stack over a range of relevant wavelengths (15 nm Au core: 530 nm to 560 nm, 20 nm Au core: 530 nm to 590 nm). Markers indicate wavelength intervals of 10 nm;
Fig. 2
Fig. 2 MCWG modal characteristics at λ = 0.470 nm as a function of core thickness and mode order, waveguide stack: BK7 – Ni(3 nm)/Ag(23 nm)/Au(5 nm) – KMPR - water. The dashed red line indicates the core thickness selected for the experiments (0.220 µm). Plots for the TM0 mode are shown in blue. Data calculated with FIMMWAVE. TOP: mode effective indices (neff, real part) as a function of core thickness, delimited by the indices of water (cladding with highest index, bottom horizontal dashed line) and KMPR (waveguide core, top horizontal dashed line), i.e.: nwater < Re{neff} < nKMPR. BOTTOM: attenuation distance vs penetration depth in the dielectric (water) for modes TE0, TM0, TE1, and TM1 as a function of core thickness - markers indicate core thickness intervals of 0.010 μm. The large diagonal arrow in the background indicates the direction of improving performance for imaging of thick objects, i.e. decreasing attenuation distance (improving resolution) and increasing penetration depth.
Fig. 3
Fig. 3 Electric (LEFT) and magnetic (RIGHT) field intensity profiles, (|Ez|2 + |Ey|2)/|E0|2 and |Hx|2/|H0|2, as a function of distance along the z axis (normal to the layer plane) from the fluid/solid interface (z = 0 µm) normalized with respect to the incident field intensities, E0 and H0. The Lp markers indicate the “penetration depth” into the fluid (distance from the interface over which the mode amplitude decreases by 1/e of its value at the interface). Background color indicates field intensity. TOP: TM0 mode in the chosen MCWG structure (220 nm KMPR core) at λ = 470 nm. The metal film stack, Ni(3 nm)/Ag(23 nm)/Au(5 nm), is located between the BK7 and KMPR layers. BOTTOM: SPR mode at a Au/water interface at λ = 633 nm. The metal film stack, Cr(3 nm)/Au(46 nm), is located between the BK7 and water layers. Data calculated with FIMMWAVE.
Fig. 4
Fig. 4 Schematic diagram of the imaging system based on a high numerical aperture objective. The inset shows the MCWG chip structure: BK7 glass – Ni(3 nm)/Ag(23 nm)/Au(5 nm) – KMPR(220 nm). A PDMS microfluidic channel is patterned atop the KMPR.
Fig. 5
Fig. 5 Typical pair of reflectivity images acquired with the microscope from two orthogonal directions of light propagation using the MCWG chip structure, where the back arrows indicate the direction of light propagation, clearly illustrating the resolution imbalance between the two axes in the plane. The angle of incidence was selected for maximum coupling of the TM0 mode into water at λ = 470 nm: the light grey zones in the images correspond to PDMS and the central dark grey zones to water. TOP-LEFT: image acquired with light propagating along the y axis. TOP-RIGHT: image acquired with light propagating along the x axis. BOTTOM: x-axis line profiles from both images (white horizontal lines across the top two images). The exponential profile and oscillations at the PDMS/water boundaries that are clearly seen in the x-axis propagation profile are due to the finite attenuation distance.
Fig. 6
Fig. 6 Images of 10 um diameter polystyrene microbeads on the chip surface showing the effect of probing depth differences between MCWG and SPRI: TOP/LEFT: MCWG image (0.22 µm core, λ = 470 nm), TOP/RIGHT: SPRI (Au/water interface, λ = 633 nm), BOTTOM/LEFT: brightfield image. BOTTOM/RIGHT: plot of average bead image intensity profiles along the direction normal to light propagation (see example line overlays in two top images): the FWHM are 1.98 ± 0.19 µm and 1.18 ± 0.09 µm for the MCWG and SPRI bead images, respectively.
Fig. 7
Fig. 7 Simultaneous brightfield and MCWG-based imaging of live HEK-293 cells cultured directly on the KMPR surface of a MCWG chip. TOP: MCWG-based reflectivity images for orthogonal light propagation directions acquired at 67.55° incidence angle (propagation directions indicated by arrows). BOTTOM/LEFT: Brightfield image showing the contours of the 4 cells in the field of view. BOTTOM/RIGHT: average reflectivity as a function of incidence angle from the two ROIs shown in MCWG images. ROI#1: extra-cellular medium, ROI#2: intra-cellular medium.

Metrics