Abstract

Multimode fibers can guide thousands of modes capable of delivering spatial information. Unfortunately, mode dispersion and coupling have so far prevented their use in endoscopic applications. To address this long-lasting challenge, we present a robust scanning fluorescence endoscope. A spatial light modulator shapes the input excitation wavefront to focus light on the distal tip of the fiber and to rapidly scan the focus over the region of interest. A detector array collects the fluorescence emission propagated back from the sample to the proximal tip of the fiber. We demonstrate that proper selection of the multimode fiber is critical for a robust calibration and for high signal-to-background ratio performance. We compare different types of multimode fibers and experimentally show that a focus created through a graded-index fiber can withstand a few millimeters of fiber distal tip translation. The resulting scanning endoscopic microscope images fluorescent samples over a field of view of 80µm with a resolution of 2µm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber

Siddharth Sivankutty, Esben Ravn Andresen, Rosa Cossart, Géraud Bouwmans, Serge Monneret, and Hervé Rigneault
Opt. Express 24(2) 825-841 (2016)

Multimode fibre based imaging for optically cleared samples

Ivan Gusachenko, Jonathan Nylk, Javier A. Tello, and Kishan Dholakia
Biomed. Opt. Express 8(11) 5179-5190 (2017)

Bend translation in multimode fiber imaging

Damien Loterie, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 6263-6273 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
    [Crossref]
  2. A. Gover, C. P. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am. 66(4), 306–311 (1976).
    [Crossref]
  3. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  4. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
    [Crossref] [PubMed]
  5. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  6. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  7. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  8. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
    [Crossref] [PubMed]
  9. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  10. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  12. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  13. H. B. Schreiber, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara (John Wiley & Sons, 2007), pp. 547–666.
  14. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  15. A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed phase modulation for multimode fiber endoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Online) (Optical Society of America, 2014), p. ITh3C.1.
  16. I. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VI: Components and Subsystems (Academic Press, 2013).
  17. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975).
    [Crossref] [PubMed]
  18. A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 025602 (2005).
    [Crossref] [PubMed]
  19. J. Goodman, Speckle Phenomena in Optics, 1st ed. (Roberts and Company Publishers, 2010).
  20. W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express 17(20), 17536–17546 (2009).
    [Crossref] [PubMed]
  21. A. M. C. Aguirre and R. Piestun, “Robustness of multimode fiber focusing through wavefront shaping,” in Latin America Optics and Photonics Conference(2014), Paper LTh4A.23 (Optical Society of America, 2014), p. LTh4A.23.
  22. F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
    [Crossref] [PubMed]

2015 (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2013 (5)

2012 (5)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

2009 (1)

2005 (1)

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 025602 (2005).
[Crossref] [PubMed]

1976 (1)

1975 (1)

Apostol, A.

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 025602 (2005).
[Crossref] [PubMed]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Chung, E.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Dogariu, A.

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 025602 (2005).
[Crossref] [PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gover, A.

Gu, R. Y.

Ha, W.

Hartell, N. A.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Jung, Y.

Kahn, J. M.

Kim, J. K.

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lee, C. P.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lee, S.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Mahalati, R. N.

Martial, F. P.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Moser, C.

Niv, E.

Oh, G.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Oh, K.

Olshansky, R.

Papadopoulos, I. N.

Piestun, R.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Psaltis, D.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yariv, A.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yun, S. H.

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Ziegler, D.

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Opt. Soc. Am. (1)

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” Opt. Fiber Technol. 19(6), 760–771 (2013).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2), 025602 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

PLoS One (1)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), e43942 (2012).
[Crossref] [PubMed]

Other (6)

J. Goodman, Speckle Phenomena in Optics, 1st ed. (Roberts and Company Publishers, 2010).

A. M. C. Aguirre and R. Piestun, “Robustness of multimode fiber focusing through wavefront shaping,” in Latin America Optics and Photonics Conference(2014), Paper LTh4A.23 (Optical Society of America, 2014), p. LTh4A.23.

H. B. Schreiber, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara (John Wiley & Sons, 2007), pp. 547–666.

A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed phase modulation for multimode fiber endoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (Online) (Optical Society of America, 2014), p. ITh3C.1.

I. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VI: Components and Subsystems (Academic Press, 2013).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (217 KB)      Projection of three foci moving at the distal tip of the fiber
» Visualization 2: MOV (119 KB)      Projection of five foci moving at the distal tip of the fiber
» Visualization 3: AVI (22194 KB)      Focus evolution while the Newport F-MLD MMF is perturbed (pressed with a finger) and released

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calibration of and focusing through a MMF. Top: Scheme of the calibration procedure. During the calibration, each Hadamard element illuminates the proximal tip of the MMF and produces a different speckle pattern at the distal tip. We extract the phase of each output mode to build the TM. Bottom: The TM provides information to calculate an optimized mask that creates an optical focus at the distal tip.

Fig. 2
Fig. 2

Fiber endoscope system and scanning capability. (a) Experimental apparatus to calibrate the MMF, measure the speckle statistics and perform fluorescence imaging. The laser beam illuminates L1,L2,L3,L4 and L5: lenses; I: Iris; S: Scrambler; TS: Translation stage; P: Polarizer. BS: Beam splitter. (b-c) Different dynamic patterns created at the distal tip consisting of three and five focus spots. In the left column three spots rotate clockwise, while in the right column five spots expand from the center of the fiber. A movie of the foci moving can be found in the supplementary material (Visualization 1 and Visualization 2). Scale bar is 25µm.

Fig. 3
Fig. 3

Multimode fiber resilience to distal tip perturbation. Intensity of the focus created using wavefront shaping as the distal tip is translated (a) in x and (b) y direction. The solid line indicates the intensity as the fiber moves away from the initial position. The dashed line indicates the intensity as the fiber moves towards the initial position. (c-g) Focus evolution while the Newport F-MLD MMF is perturbed (pressed with a finger) and released. The image is saturated to appreciate better the focus and the speckle field at the same time. The white curve delimits the border of the MMF.

Fig. 4
Fig. 4

Speckle intensity image, speckle contrast, and enhancement at the distal tip of different fibers. (a) Thorlabs FT200EMT, (b) Thorlabs UM22-100, (c) Newport F-MLD, (d) Corning® ClearCurve®. The bottom insets indicate the speckle contrast, C, for each fiber while the top insets indicate the mean of the enhancement of the focus created at 1000 different output modes. Scale bar is 25µm.

Fig. 5
Fig. 5

Demonstration of the single-fiber endoscope. (a) Colormap of the peak-to-brakground ratio of each focus created at the distal tip of the fiber. (b) Sample of 4µm fluorescence beads imaged with fluorescence widefield microscope. (c) The same sample imaged with the MMF scanning endoscope. (d) Line scan of two beads pointed by the red and green arrows in (c). (e) A brain monkey slice labeled with Cy3 imaged using a fluorescence widefield microscope and (f) using the MMF scanning endoscope. Scale bar is 20µm

Tables (1)

Tables Icon

Table 1 Summary of V-number and Number of Propagating Modes for the Tested MMFs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( a + b )=S( a b + )=( r t' t r' )( a b + ),
b m + = n=1 N t mn a n + .
t *n = I 0 I π/2 4 +i I π I π/2 4 .
d P m dz = γ m P m + m'm d mm' ( P m P m ) ,
d GI,m = 1 8 ( nka ) 2 [ m M ]C( β m β m ) d SI,m = 1 8 ( nka ) 2 C( β m β m ),
C= I 2 I 2 1 = σ I I ¯ ,

Metrics