Abstract

In this paper, we report on the characterization of InAs/GaAsSb type-II superlattice long wavelength infrared photodiodes grown on InAs substrates by molecular-beam epitaxy and also present the device performance comparison with the superlattice devices grown on GaSb substrates. These devices with PIN structures had a 100% cutoff wavelength of 10 μm. The dark current density of InAs-based device at −30 mV reverse bias was 4.01 × 10−4 A/cm2 and the resistance-area product at zero bias (R0A) was 36.9 Ωcm2. The dark current density of GaSb-based device is higher more than one order of magnitude than that of InAs-based device. The temperature-dependence and bias-dependence of the dark current are studied experimentally and correlated to the theory. Good agreement was achieved between the measured I-V curves and the simulated ones, and between the experimental and theoretically predicted differential resistance values. Compared with InAs-based superlattice device, the generation-recombination current of GaSb-based device is larger and dominates in a wider temperature range due to shorter carrier lifetime and higher defect density.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes

Antoni Rogalski, Małgorzata Kopytko, and Piotr Martyniuk
Appl. Opt. 57(18) D11-D19 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
    [Crossref]
  2. B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
    [Crossref]
  3. M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
    [Crossref]
  4. M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
    [Crossref]
  5. A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).
  6. C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
    [Crossref]
  7. R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
    [Crossref]
  8. D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
    [Crossref]
  9. D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
    [Crossref]
  10. B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
    [Crossref]
  11. S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
    [Crossref]
  12. F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
    [Crossref]
  13. F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
    [Crossref]

2016 (1)

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

2015 (1)

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

2013 (3)

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

2011 (1)

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

2010 (3)

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

2009 (3)

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

2007 (1)

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

Abdollahi Pour, S.

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

Asplund, C.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Belenky, G.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

Bogdanov, S.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Callewaert, F.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Chen, G.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Chen, J.

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

Connelly, B. C.

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

Crowne, F. J.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

Darvish, S. R.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Delaunay, P.

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

Delaunay, P.-Y.

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

Donetsky, D.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

Fleißner, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Gautam, N.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Gunapala, S. D.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Haddadi, A.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

He, L.

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

Hier, H.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

Hill, C. J.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Hoang, A. M.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Hoffman, D.

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

Höglund, L.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

Huang, E. K.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

Keo, S. A.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Khoshakhlagh, A.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

Krishna, S.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Lantz, D.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Malm, H.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Marcks von Würtemberg, R.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Martijn, H.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

McClintock, R.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

Metcalfe, G. D.

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

Mumolo, J. M.

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Nguyen, B.

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

Nguyen, B.-M.

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

Nguyen, J.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Plis, E.

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

Razeghi, M.

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

Rehm, R.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Rutz, F.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Scheibner, R.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Schmitz, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Shen, H.

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

Soibel, A.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Suchalkin, S.

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

Svensson, S.

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

Svensson, S. P.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

Ting, D. Z.

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

Ting, D.-Y.

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

Vorobjev, L. E.

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

Walther, M.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Wang, D.

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

Wang, F.

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

Wraback, M.

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

Xu, Zh.

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

Zhou, Y.

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

Ziegler, J.

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

Appl. Phys. Lett. (5)

D.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector,” Appl. Phys. Lett. 95(2), 023508 (2009).
[Crossref]

B. Nguyen, D. Hoffman, P. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Appl. Phys. Lett. 91(16), 163511 (2007).
[Crossref]

D. Donetsky, S. Svensson, L. E. Vorobjev, and G. Belenky, “Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures,” Appl. Phys. Lett. 95(21), 212104 (2009).
[Crossref]

D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Appl. Phys. Lett. 97(5), 052108 (2010).
[Crossref]

B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Appl. Phys. Lett. 97(25), 251117 (2010).
[Crossref]

Infrared Phys. Technol. (3)

M. Razeghi, A. Haddadi, A. M. Hoang, E. K. Huang, G. Chen, S. Bogdanov, S. R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Phys. Technol. 59(13), 41–52 (2013).
[Crossref]

C. Asplund, R. Marcks von Würtemberg, D. Lantz, H. Malm, H. Martijn, E. Plis, N. Gautam, and S. Krishna, “Performance of mid-wave T2SL detectors with heterojunction barriers,” Infrared Phys. Technol. 59(6), 22–27 (2013).
[Crossref]

R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleißner, R. Scheibner, and J. Ziegler, “InAs/GaSb superlattices for advanced infrared focal plane arrays,” Infrared Phys. Technol. 52(6), 344–347 (2009).
[Crossref]

J. Cryst. Growth (2)

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based InAs/GaAsSb type-II superlattices: Growth and characterization,” J. Cryst. Growth 416, 130–133 (2015).
[Crossref]

S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” J. Cryst. Growth 334(1), 103–107 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Khoshakhlagh, L. Höglund, D. Z. Ting, C. J. Hill, S. A. Keo, A. Soibel, J. Nguyen, and S. D. Gunapala, “High performance long-wave type-II superlattice infrared detectors,” J. Vac. Sci. Technol. B 31(3), 03C122 (2013).

Proc. SPIE (2)

M. Razeghi, E. K. Huang, B.-M. Nguyen, S. Abdollahi Pour, and P.-Y. Delaunay, “Type-II antimonide-based superlattices for the third generation infrared focal plane arrays,” Proc. SPIE 7660, 76601F (2010).
[Crossref]

F. Wang, J. Chen, Zh. Xu, Y. Zhou, and L. He, “InAs-based type-II superlattice long wavelength photodetectors,” Proc. SPIE 9755, 975519 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic of both InAs-based and GaSb-based devices
Fig. 2
Fig. 2 HRXRD curves of both the InAs-based and GaSb-based T2SL superlattices.
Fig. 3
Fig. 3 (a) The optical spectra of both InAs-based and GaSb-based superlattice photodiodes and (b) the calculated cutoff wavelength and the experimental results as a function of InAs layer thickness in one period.
Fig. 4
Fig. 4 Dark current density and dynamic resistance-area product for both (a) InAs-based and (b) GaSb-based superlattice devices as a function of applied bias. These photodiodes had an area of 200 μm × 200 μm.
Fig. 5
Fig. 5 Measured and modeled dark current components for both (a) the InAs-based and (b) GaSb-based superlattice devices at 80 K. The model consists of tunneling, generation-recombination, and diffusion current densities.
Fig. 6
Fig. 6 The experimental (solid lines) and simulated (dotted lines) temperature-dependent dark current of (a) InAs-based T2SL device and (b) GaSb-based device as a function of bias voltage.
Fig. 7
Fig. 7 The R0A product of (a) InAs-based device and (b) GaSb-based device as a function of the inverse temperature.

Tables (1)

Tables Icon

Table 1 The measured and fitted dark current density values at 80 K for both InAs-based and GaSb-based superlattice devices.

Metrics