Abstract

We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 × 32-Gbaud PDM QPSK channels and 8 × 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear threshold and a best achievable Q2 factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16-QAM signals. The technique of multiple OPCs is proved to be transparent to modulation formats and effective for different transmission links. In the WDM PDM QPSK transmission system over 3600 km, by using multiple OPCs the nonlinear threshold (i.e. optimal signal launched power) was increased by ~5 dB compared to the case of no OPC and increased by ~2 dB compared to the case of mid-span OPC. In the WDM PDM 16-QAM transmission system over 912 km, by using the multiple OPCs the nonlinear threshold was increased by ~7 dB compared to the case of no OPC and increased by ~1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q2 factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kerr nonlinearity mitigation in 5 × 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification

Isaac Sackey, Francesco Da Ros, Mahmoud Jazayerifar, Thomas Richter, Christian Meuer, Markus Nölle, Lutz Molle, Christophe Peucheret, Klaus Petermann, and Colja Schubert
Opt. Express 22(22) 27381-27391 (2014)

Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation

Takeshi Umeki, Takushi Kazama, Akihide Sano, Kohki Shibahara, Kenya Suzuki, Masashi Abe, Hirokazu Takenouchi, and Yutaka Miyamoto
Opt. Express 24(15) 16945-16951 (2016)

Multichannel nonlinear distortion compensation using optical phase conjugation in a silicon nanowire

Dragana Vukovic, Jochen Schröder, Francesco Da Ros, Liang Bangyuan Du, Chang Joon Chae, Duk-Yong Choi, Mark D. Pelusi, and Christophe Peucheret
Opt. Express 23(3) 3640-3646 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  2. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  3. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
    [Crossref] [PubMed]
  4. E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  5. E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
    [Crossref] [PubMed]
  6. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [Crossref]
  7. S. L. I. Olsson, B. Corcoran, C. Lundström, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance,” J. Lightwave Technol. 33(3), 710–721 (2015).
    [Crossref]
  8. H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber Nonlinearity Compensation of an 8-channel WDM PDM-QPSK Signal using Multiple Phase Conjugations,” in: Optical Fiber Communication Conference (OFC), Paper M3C.2, Optical Society of America (2014).
  9. H. Hu, R. M. Jopson, A. H. Gnauck, D. Pilori, S. Randel, and S. Chandrasekhar, “Fiber Nonlinearity Compensation by Repeated Phase Conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.3, Optical Society of America (2016).
  10. I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in: Optical Fiber Communication Conference (OFC), Paper M3C.1, Optical Society of America (2014).
  11. S. Yoshima, Z. Liu, Y. Sun, K. R. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity Mitigation for Multi-channel 64-QAM Signals in a Deployed Fiber Link through Optical Phase Conjugation,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.4, Optical Society of America (2016).
  12. S. Namiki, H. Nguyen Tan, K. Solis-Trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.1, Optical Society of America (2016).
  13. A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  14. I. Sackey, F. Da Ros, M. Jazayerifar, T. Richter, C. Meuer, M. Nölle, L. Molle, C. Peucheret, K. Petermann, and C. Schubert, “Kerr nonlinearity mitigation in 5 × 28-GBd PDM 16-QAM signal transmission over a dispersion-uncompensated link with backward-pumped distributed Raman amplification,” Opt. Express 22(22), 27381–27391 (2014).
    [Crossref] [PubMed]
  15. M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, B. Corcoran, and A. J. Lowery, “Experimental demonstrations of dual polarization CO-OFDM using mid-span spectral inversion for nonlinearity compensation,” Opt. Express 22(9), 10455–10466 (2014).
    [Crossref] [PubMed]
  16. H. Kogelnik and K. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58(2), 273–274 (1968).
    [Crossref]
  17. B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).
  18. D. M. Pepper and A. Yariv, “Compensation for phase distortions in nonlinear media by phase conjugation,” Opt. Lett. 5(2), 59–60 (1980).
    [Crossref] [PubMed]
  19. K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugation,” IEEE Photonics Technol. Lett. 6(1), 104–105 (1994).
    [Crossref]
  20. A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
    [Crossref]
  21. P. Kaewplung and K. Kikuchi, “Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification,” J. Lightwave Technol. 25(10), 3035–3050 (2007).
    [Crossref]
  22. H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
    [Crossref] [PubMed]
  23. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
    [Crossref]
  24. M.-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-Linewidth Idler Generation in Fiber Four-Wave Mixing and Parametric Amplification by Dithering Two Pumps in Opposition of Phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
    [Crossref]
  25. L. Grüner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear with improved threshold for stimulated Brillouin scattering,” in Proceedings of ECOC 2010, paper Tu.4.D3 (2010).
    [Crossref]
  26. R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29(25), 2216–2217 (1993).
    [Crossref]
  27. M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
    [Crossref]

2016 (1)

2015 (3)

2014 (2)

2013 (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

2009 (1)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

2008 (1)

2007 (1)

2002 (1)

1994 (1)

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugation,” IEEE Photonics Technol. Lett. 6(1), 104–105 (1994).
[Crossref]

1993 (2)

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
[Crossref]

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29(25), 2216–2217 (1993).
[Crossref]

1980 (1)

1972 (1)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

1968 (1)

Alic, N.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Al-Khateeb, M. A. Z.

Andrekson, P. A.

Ataie, V.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Bayvel, P.

Chandrasekhar, S.

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Corcoran, B.

Da Ros, F.

Derosier, R. M.

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
[Crossref]

Dinu, M.

Doran, N.

Du, L. B.

Ellis, A. D.

Eriksson, T. A.

Essiambre, R. J.

Fabbri, S.

Faizullov, F. S.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

Foo, B.

Foschini, G. J.

Gnauck, A. H.

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
[Crossref]

Goebel, B.

Gordienko, V.

Harper, P.

Ho, M.-C.

Hu, H.

Ip, E.

Iqbal, M. A.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Jazayerifar, M.

Jopson, R. M.

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29(25), 2216–2217 (1993).
[Crossref]

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
[Crossref]

Kaewplung, P.

Kahn, J. M.

Karlsson, M.

Kazovsky, L. G.

Kikuchi, K.

P. Kaewplung and K. Kikuchi, “Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification,” J. Lightwave Technol. 25(10), 3035–3050 (2007).
[Crossref]

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugation,” IEEE Photonics Technol. Lett. 6(1), 104–105 (1994).
[Crossref]

Kogelnik, H.

Kramer, G.

Kuo, B. P.-P.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Lavery, D.

Liga, G.

Liu, L.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Lorattanasane, C.

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugation,” IEEE Photonics Technol. Lett. 6(1), 104–105 (1994).
[Crossref]

Lowery, A. J.

Ludwig, R.

Lundström, C.

Maher, R.

Marhic, M. E.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

M.-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-Linewidth Idler Generation in Fiber Four-Wave Mixing and Parametric Amplification by Dithering Two Pumps in Opposition of Phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

McCarthy, M. E.

Meuer, C.

Molle, L.

Mondaca, G. S.

Morshed, M.

Myslivets, E.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Nölle, M.

Nouroozi, R.

Olsson, S. L. I.

Pelusi, M. D.

Pennington, K.

Pepper, D. M.

Perentos, A.

Petermann, K.

Peucheret, C.

Phillips, I. D.

Popovichev, V. I.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

Radic, S.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Rafique, D.

Ragul’skii, V. V.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

Randel, S.

Richter, T.

Sackey, I.

Schmidt-Langhorst, C.

Schubert, C.

Sohler, W.

Stephens, M. F. C.

Suche, H.

Sygletos, S.

Tan, M.

Temprana, E.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Tench, R. E.

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29(25), 2216–2217 (1993).
[Crossref]

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Turitsyn, S. K.

Vedadi, A.

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

Winzer, P. J.

Wong, K. Y. K.

Xie, C.

Yariv, A.

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

Zhao, J.

Electron. Lett. (1)

R. M. Jopson and R. E. Tench, “Polarisation-independent phase conjugation of lightwave signals,” Electron. Lett. 29(25), 2216–2217 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Jamshidifar, A. Vedadi, and M. E. Marhic, “Reduction of Four-Wave-Mixing Crosstalk in a Short Fiber-Optical Parametric Amplifier,” IEEE Photonics Technol. Lett. 21(17), 1244–1246 (2009).
[Crossref]

K. Kikuchi and C. Lorattanasane, “Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugation,” IEEE Photonics Technol. Lett. 6(1), 104–105 (1994).
[Crossref]

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photonics Technol. Lett. 5(6), 663–666 (1993).
[Crossref]

J. Lightwave Technol. (8)

P. Kaewplung and K. Kikuchi, “Simultaneous Cancellation of Fiber Loss, Dispersion, and Kerr Effect in Ultralong-Haul Optical Fiber Transmission by Midway Optical Phase Conjugation Incorporated With Distributed Raman Amplification,” J. Lightwave Technol. 25(10), 3035–3050 (2007).
[Crossref]

A. D. Ellis, M. Tan, M. A. Iqbal, M. A. Z. Al-Khateeb, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

E. Ip and J. M. Kahn, “Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
[Crossref]

S. L. I. Olsson, B. Corcoran, C. Lundström, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance,” J. Lightwave Technol. 33(3), 710–721 (2015).
[Crossref]

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal,” J. Lightwave Technol. 33(7), 1286–1291 (2015).
[Crossref]

M.-C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-Linewidth Idler Generation in Fiber Four-Wave Mixing and Parametric Amplification by Dithering Two Pumps in Opposition of Phase,” J. Lightwave Technol. 20(3), 469–476 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

JETP Lett. (1)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, and F. S. Faizullov, “Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering,” JETP Lett. 15(3), 109–112 (1972).

Nat. Photonics (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Other (6)

H. Hu, R. M. Jopson, A. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. McKinstrie, “Fiber Nonlinearity Compensation of an 8-channel WDM PDM-QPSK Signal using Multiple Phase Conjugations,” in: Optical Fiber Communication Conference (OFC), Paper M3C.2, Optical Society of America (2014).

H. Hu, R. M. Jopson, A. H. Gnauck, D. Pilori, S. Randel, and S. Chandrasekhar, “Fiber Nonlinearity Compensation by Repeated Phase Conjugation in 2.048-Tbit/s WDM transmission of PDM 16-QAM Channels,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.3, Optical Society of America (2016).

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in: Optical Fiber Communication Conference (OFC), Paper M3C.1, Optical Society of America (2014).

S. Yoshima, Z. Liu, Y. Sun, K. R. Bottrill, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Nonlinearity Mitigation for Multi-channel 64-QAM Signals in a Deployed Fiber Link through Optical Phase Conjugation,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.4, Optical Society of America (2016).

S. Namiki, H. Nguyen Tan, K. Solis-Trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in: Optical Fiber Communication Conference (OFC), Paper Th4F.1, Optical Society of America (2016).

L. Grüner-Nielsen, S. Dasgupta, M. D. Mermelstein, D. Jakobsen, S. Herstrom, M. E. V. Pedersen, E. L. Lim, S. Alam, F. Parmigiani, D. Richardson, and B. Palsdottir, “A silica based highly nonlinear with improved threshold for stimulated Brillouin scattering,” in Proceedings of ECOC 2010, paper Tu.4.D3 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the polarization-insensitive fiber-optic parametric amplifier (PI-FOPA) using two pumps with orthogonal polarizations and counter phasing, simultaneously generating high-quality idlers. Acronyms are: OBF, optical bandpass filter; PC, polarization controller; PBS, polarization beam splitter; and HNLF, highly nonlinear fiber. Inset: optical spectrum at the output the 500-m HNLF.

Fig. 2
Fig. 2

Schematics of two different selections using a wavelength selective switch (WSS) at the output of the HNLF: FOPA w/o OPC selected (left) and FOPA w/ OPC selected (right).

Fig. 3
Fig. 3

Schematic of the experimental setup for fiber nonlinearity mitigation of a 1.024 Tbit/s WDM PDM-QPSK signal using PI-FOPA based multiple OPCs in the loop apparatus, including erbium-doped fiber amplifiers (EDFAs), digital-to-analog converters (DACs), polarization-insensitive fiber-optic parametric amplifier (PI-FOPA), True-Wave® reduced-slope fiber (TWRS), a local oscillator (LO) and analog-to-digital converters (ADCs).

Fig. 4
Fig. 4

Spectra at the PI-FOPA input (red) and output (black), showing two orthogonally polarized pumps, a signal band of 8 WDM channels having the same wavelengths as the input channels and an idler band containing the 8 phase conjugates of the signal channels.

Fig. 5
Fig. 5

Schematic of four cases in comparison: (a) w/o FOPA; (b) FOPA w/o OPC; (c) FOPA w/ mid-span OPC; (d) FOPA w/ multiple OPC. The WDM signals at the input of the FOPA are colored black, which could be at the blue band or red band. At the output of the FOPA either amplified signals or conjugated idlers are selected. The unselected one is colored grey.

Fig. 6
Fig. 6

Measured Q2 factor (derived from the BER) as a function of launched signal power per channel for the center channel of the WDM signal after 3600 km transmission (a) and after 6000 km transmission (b). Inset: recovered constellations.

Fig. 7
Fig. 7

(a) OSNR after the transmission of 3600 km as a function of launched signal power for the case of ‘w/o FOPA’ and ‘FOPA w/o OPC’; (b) Measured Q2 factor (derived from the BER) as a function of transmission distance for the case of ‘w/o FOPA’ and ‘FOPA w/ multiple OPC’ for optimal powers.

Fig. 8
Fig. 8

Spectra (right axis) and BERs (left axis) after 3600 km transmission and 6000 km transmission of 8 channels for the cases of ‘w/o FOPA’ and ‘FOPA w/ multiple OPC’.

Fig. 9
Fig. 9

Measured Q2 factor (derived from the BER) as a function of signal launched power per channel after the 912 km SMF transmission in the single channel case (a) and the WDM channels case (b). Inset: recovered constellations.

Metrics