Abstract

We propose, simulate and experimentally demonstrate a method for realizing spatially-mapped birefringence onto integrated photonic devices and circuits. The fabrication method is based on applying a damascene-like process to dielectric film stacks to form anisotropic optical waveguides. An integrated polarizing beam-splitter (PBS) is realized with unprecedented performance: a record 0.52 octaves of fractional bandwidth (116 THz), maximum on-chip insertion loss of 1.4 ± 0.8 dB, and a minimum extinction ratio of 16 ± 3 dB, pushing it into the realm of wideband spectroscopy and imaging applications. Additionally, photonic structures such as polarization-selective beam-taps and polarization-selective microring resonators are demonstrated.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrated optical polarization splitter based on photobleaching-induced birefringence in azo dye polymers

Sang-Shin Lee, Sean Garner, William H. Steier, and Sang-Yung Shin
Appl. Opt. 38(3) 530-533 (1999)

Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics

Martin H. P. Pfeiffer, Arne Kordts, Victor Brasch, Michael Zervas, Michael Geiselmann, John D. Jost, and Tobias J. Kippenberg
Optica 3(1) 20-25 (2016)

Single-mode and single-polarization photonics with anchored-membrane waveguides

Jeff Chiles and Sasan Fathpour
Opt. Express 24(17) 19337-19343 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H. S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol. 29(4), 386–395 (2011).
    [Crossref]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  3. Z. Wang, H.-C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6(7), 2562–2574 (2015).
    [Crossref] [PubMed]
  4. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref] [PubMed]
  5. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  6. S. Tan and R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004).
    [Crossref] [PubMed]
  7. P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
    [Crossref]
  8. D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
    [Crossref]
  9. H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
    [Crossref] [PubMed]
  10. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
    [Crossref] [PubMed]
  11. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  12. B. Little, “Integrated optics polarization beam splitter using form birefringence,” U.S. patent US20060120657 A1 (2006).
  13. X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride / silicon-on-insulator platform,” Opt. Express 25(7), 8296–8305 (2017).
    [Crossref] [PubMed]
  14. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
    [Crossref]
  15. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  16. E. Kapon, “Polarizing optical waveguides,” U.S. patent US4869569 A (1989).
  17. Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
    [Crossref]
  18. Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
    [Crossref]
  19. O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
    [Crossref]
  20. M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
    [Crossref]
  21. S. R. Forrest, F. F. So, and D. Y. Zang, “Polarization-selective integrated optoelectronic devices incorporating crystalline organic thin films,” U.S. patent US5172385 A (1992).
  22. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
    [Crossref] [PubMed]
  23. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20–25 (2016).
    [Crossref]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Elsevier, 1980).
  25. S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1(2), 96 (2014).
    [Crossref]
  26. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627 (1997).
    [Crossref]
  27. Y. Tan, S. Chen, and D. Dai, “Polarization-selective microring resonators,” Opt. Express 25(4), 4106–4119 (2017).
    [Crossref] [PubMed]
  28. B. Shen, R. Polson, and R. Menon, “Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
    [Crossref] [PubMed]
  29. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
  30. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]

2017 (3)

2016 (5)

2015 (1)

2014 (2)

2012 (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2006 (1)

2004 (1)

2000 (1)

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

1999 (1)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

1997 (2)

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627 (1997).
[Crossref]

1994 (1)

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (2)

Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
[Crossref]

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Aitchison, J. S.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bowers, J. E.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Brasch, V.

Brogniez, G.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Butrie, T.

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, L.

Chen, S.

Chen, W.

Chenault, D. B.

Cheng, C.-C.

Cheng, J.

Chepfer, H.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Chou, H.-P.

Coolbaugh, D. D.

Cornwell, D.

D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
[Crossref]

Couvert, P.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Dai, D.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dentai, A.

Doerr, C.

Dominic, V.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Fainman, Y.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Geiselmann, M.

Ghaemi, A.

Goldfarb, G.

Goldstein, D. L.

Goloub, P.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Herman, M.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Hosseini, E. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ito, H.

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

Iwamura, H.

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
[Crossref]

Jacob, Z.

Jahani, S.

Jayaraman, V.

Jost, J. D.

Kato, M.

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kimerling, L.

Kippenberg, T. J.

Kish, F.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Kordts, A.

Kuntz, M.

Lal, V.

Lambert, D.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Leake, G.

Lee, H.-C.

Lee, H.-J.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lee, M.-H.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Little, B.

Malendevich, R.

Menon, R.

B. Shen, R. Polson, and R. Menon, “Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref] [PubMed]

Michel, J.

Mikami, O.

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
[Crossref]

Miyazawa, T.

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

Mojahedi, M.

Nagarajan, R.

Narayanan, R. M.

Nielsen, T.

Nielson, T.

Nilsson, A.

Oh, M.-C.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Okada, A.

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Park, S. Y.

Pfeiffer, M. H. P.

Pleumeekers, J.

Polson, R.

B. Shen, R. Polson, and R. Menon, “Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Raburn, M.

Rahn, J.

Reffle, M.

Riedi, J.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Salvekar, A. A.

Scherer, A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Séze, G.

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Shaw, J. A.

Shen, B.

B. Shen, R. Polson, and R. Menon, “Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Su, Z.

Sun, J.

Sun, P.-C.

Sun, R.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Sun, X.

Suzuki, Y.

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
[Crossref]

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tan, S.

Tan, Y.

Tang, J.

Taylor, B.

Timurdogan, E.

Tsai, H. S.

Tsuchimori, M.

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

Tyan, R.-C.

Tyo, J. S.

Vermeulen, D.

Wang, Z.

Watanabe, O.

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

Watts, M. R.

Welch, D.

Wu, H.

Xu, F.

Zervas, M.

Zhang, J.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic polarization splitter on silicon,” Appl. Phys. Lett. 56(2), 120–121 (1990).
[Crossref]

Y. Suzuki, H. Iwamura, and O. Mikami, “TE/TM mode selective channel waveguides in GaAs/AlAs superlattice fabricated by SiO2 cap disordering,” Appl. Phys. Lett. 56(1), 19–20 (1990).
[Crossref]

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett. 71(6), 750–752 (1997).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

Y. Suzuki, H. Iwamura, T. Miyazawa, and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering,” IEEE J. Quantum Electron. 30(8), 1794–1800 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Geophys. Res. Atmos. (1)

P. Goloub, M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, “Cloud thermodynamical phase classification from the POLDER spaceborne instrument,” J. Geophys. Res. Atmos. 105(D11), 14747–14759 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nat. Commun. (1)

B. Shen, R. Polson, and R. Menon, “Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking,” Nat. Commun. 7, 13126 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Photonics News (1)

D. Cornwell, “Space-based laser communications break threshold,” Opt. Photonics News 27(5), 24–31 (2016).
[Crossref]

Optica (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (5)

B. Little, “Integrated optics polarization beam splitter using form birefringence,” U.S. patent US20060120657 A1 (2006).

E. Kapon, “Polarizing optical waveguides,” U.S. patent US4869569 A (1989).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Elsevier, 1980).

S. R. Forrest, F. F. So, and D. Y. Zang, “Polarization-selective integrated optoelectronic devices incorporating crystalline organic thin films,” U.S. patent US5172385 A (1992).

D. G. Rabus, Integrated Ring Resonators (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Fundamental and hybrid waveguide arrangements used in this platform. In (e), the inset to the right shows simulated intensity distributions for TE- and TM-polarized light for the ACH state, illustrating how each polarization-mode is tightly confined to the respective region of greater effective index. (g) Scanning-electron micrograph (SEM) of the fabricated MLS cross-section. The apparent roughness is a result of wet-etching performed to enhance the visible contrast of the layers. (h-m) Simplified fabrication flow: (h) MLS deposition, (i) etching of trenches in the MLS, (j) refill of trenches with SiON, (k) planarization with resist, (l) etch-back with plasma, and (m) top-cladding SiO2 deposition.
Fig. 2
Fig. 2 Polarizing beam splitter design and simulations. (a) Design employing state transitions (whitespace is SiO2 cladding). (b-d) Simulated normalized electric field (top-view) of the PBS for (b,c) λ = 600 nm, (d,e) λ = 1400 nm; (b,d) TM-polarized input, and (c,e) TE-polarized input. (f) Simulated insertion loss spectrum; (g) simulated ER spectrum.
Fig. 3
Fig. 3 Polarization-selective beam-tap/microring-resonator design and simulations. (a) Schematic top view of the proposed design approach for a TE-selective microring resonator. Whitespace is the SiO2 cladding. (b-d) Simulated normalized electric field profile from a top-view of beam-taps for the (b) TE-selective design, (c) TM-selective design, and (d) SiON-core-only design (non-selective).
Fig. 4
Fig. 4 Device layout and characterization results for polarizing beam-splitter. (a) Top-view schematic of the device layout for testing the PBS, showing the common input bus splitting into the reference and PBS output paths. An example measurement of a port power measurement via top-view imaging is also included (λ = 855 nm). (b) Top-view from a camera showing scattered light from the PBS arms as TE and TM input polarizations are selected; (c) Experimental insertion loss spectrum observed from the PBS with maximum in-band loss highlighted; (d) Experimental ER spectrum, with minimum in-band value highlighted.
Fig. 5
Fig. 5 Polarization-selective beam-taps and microring resonators. (a,b) Device layout for: (a) Beam-taps; (b) Microring resonators. The same geometrical parameters are applied to the TM- and TE-selective PSBTs in a given measurement path (i.e., waveguide width, coupling gap); only the composition of the bus and tap waveguide cores (SiON or MLS) are swapped as dictated by the design. Radius = 100 μm. Vertical lines are etched trenches to prevent light coupled into slab waveguide modes from interfering with the measurements. (c-d) Experimentally measured transmission spectra for polarization-selective microring resonators: (c) TM-selective PSMR. (d) TE-selective PSMR, showing the resonances for TM- and TE-polarized input light and the relative ERs. Inset: top-view infrared micrograph of a PSMR on-resonance.

Tables (2)

Tables Icon

Table 1 Comparison of experimental integrated polarizing beam splitter performance

Tables Icon

Table 2 Experimental polarization-selective beam-tap performance.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n eff,TE 2 =f n H 2 +(1f) n L 2 ,
1 n eff,TM 2 = f n H 2 + (1f) n L 2 ,
t H,L << λ H ,
n core > n eff,TM ,
n core < n eff,TE ,
n clad < n core .

Metrics