Abstract

We systematically analyze the ambient contrast ratio (ACR) of liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays for smartphones, TVs, and public displays. The influencing factors such as display brightness, ambient light illuminance, and surface reflection are investigated in detail. At low ambient light conditions, high static contrast ratio plays a key role for ACR. As the ambient light increases, high brightness gradually takes over. These quantitative results set important guidelines for future display optimization. Meanwhile, to improve an OLED’s ACR at large oblique angles, we propose a new broadband and wide-view circular polarizer consisting of one linear polarizer and two biaxial films. Good performance is realized.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device

Jiun-Haw Lee, Xinyu Zhu, Yi-Hsin Lin, Wing Kit Choi, Tien-Chun Lin, Sheng-Chih Hsu, Hoang-Yan Lin, and Shin-Tson Wu
Opt. Express 13(23) 9431-9438 (2005)

Reflective dual-mode liquid crystal display possessing low power consumption and high contrast ratio under ambient light

Taehyung Kim, Joong Ha Lee, Tae-Hoon Yoon, and Suk-Won Choi
Opt. Express 20(14) 15522-15529 (2012)

Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays

Haiwei Chen, Ruidong Zhu, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(3) 1973-1984 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014).
  2. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
    [Crossref]
  3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
    [Crossref]
  4. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref]
  5. H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).
  6. T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed. (John Wiley & Sons, 2017).
  7. T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).
  8. H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).
  9. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).
  10. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  11. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  12. J. A. Dobrowolski, B. T. Sullivan, and R. C. Bajcar, “Optical interference, contrast-enhanced electroluminescent device,” Appl. Opt. 31(28), 5988–5996 (1992).
    [Crossref] [PubMed]
  13. J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
    [Crossref] [PubMed]
  14. E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
    [Crossref]
  15. J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).
  16. Z. Ge and S. T. Wu, Transflective Liquid Crystal Displays (John Wiley & Sons, 2010).
  17. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
    [Crossref]
  18. G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
    [Crossref]
  19. H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).
  20. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  21. H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
    [Crossref]
  22. DisplayMate Technologies Corp, http://www.displaymate.com/
  23. R. M. Soneira, Tablet and Smartphone Displays under Bright Ambient Lighting Shoot-Out Master Photo Grid for Viewing Screen Shots of all the Displays (DisplayMate Technologies Corp., 2012).
  24. H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).
  25. H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
    [Crossref] [PubMed]
  26. R. M. Soneira. iPhone X OLED Display Technology Shoot-Out. DisplayMate Technologies Corp., 2017.
  27. G. Walker, GD-Itronix Dynavue Technology. The Ultimate Outdoor-Readable Touch-Screen Display (Rugged PC Review, 2007).
  28. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
    [Crossref]
  29. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  30. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  31. G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with Moth-eye-like structure for flexible display application,” Optica 4(7), 678–683 (2017).
    [Crossref]
  32. P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).
  33. C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
    [Crossref]
  34. H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
    [Crossref]
  35. K. Müllen and U. Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications (John Wiley & Sons, 2006).
  36. B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
    [Crossref] [PubMed]
  37. A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).
  38. N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).
  39. Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).
  40. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
    [Crossref] [PubMed]

2018 (1)

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

2017 (3)

2016 (2)

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

2015 (1)

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

2014 (2)

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

2013 (1)

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

2012 (3)

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

2011 (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

2010 (1)

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

2008 (1)

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

2007 (2)

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

2006 (1)

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

2005 (3)

2004 (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

2003 (2)

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
[Crossref] [PubMed]

2001 (1)

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

2000 (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

1998 (2)

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1992 (1)

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Ahn, B. C.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Ahn, S. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Bajcar, R. C.

Brett, M. J.

Chen, H.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
[Crossref] [PubMed]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Chen, S.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Cheng, I. C.

Chida, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Choi, H. C.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Choi, S. H.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Choi, W.

de Greef, P.

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

Deepak,

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Dobrowolski, J. A.

Furuki, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Ha, T. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Han, B. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Hashizume, M.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Heidrich, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hong, Q.

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Hsu, S. C.

Hulze, H. G.

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

Hur, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Hwangbo, C. K.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Ito, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Jang, I. W.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Jeong, K. U.

Jeong, Y. S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Jo, M. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Käläntär, K.

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

Kataoka, S.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Kelley, E. F.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Kennedy, S. R.

Kim, B. C.

Kim, B. K.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Kim, H. R.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Kim, H. S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, N. Y.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Kim, S. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Koike, Y.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Koma, N.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Lai, C. C.

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

Lan, Y. H.

Lee, G. D.

Lee, J. H.

Lee, K. C.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Lee, S. H.

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
[Crossref] [PubMed]

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

Lee, Y. Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Li, M. C.

Lim, Y. J.

Lin, B. Y.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Lin, H. Y.

Lin, T. C.

Lin, Y. H.

Lindfors, M.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Lu, R.

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Luo, Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Muto, M.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Narayanan Unni, K. N.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Oh, C. H.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Oh, J. H.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Ohmuro, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Okamoto, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Otani, T.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Park, K. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Park, K. M.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Park, M. C.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Penczek, J.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Peng, L. H.

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Sasabayashi, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Sasaki, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Sasaoka, T.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Sato, Y.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Shin, H. J.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Singh, R.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Solanki, A.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Son, Y. B.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Song, B. C.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Song, J. H.

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Suga, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Sullivan, B. T.

Sung, J. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Takaki, J.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Takasugi, S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Takeda, A.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Tan, G.

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tatsuki, K.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Tsai, C. C.

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

Tsai, Y. S.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Tsuda, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Uchiyama, A.

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

Urabe, T.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Wei, M. K.

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Whitehead, L. A.

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Wu, S. T.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
[Crossref] [PubMed]

G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with Moth-eye-like structure for flexible display application,” Optica 4(7), 678–683 (2017).
[Crossref]

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[Crossref] [PubMed]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Wu, T. X.

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Yamamoto, M.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Yatabe, T.

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

Yin, Y.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Yoshida, S.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Yun, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Zhu, R.

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Zhu, X.

ACM Trans. Graph. (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE Trans. Consum. Electron. (1)

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

J. Phys. D (1)

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

J. Soc. Inf. Disp. (2)

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Light Sci. Appl. (1)

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Liq. Cryst. (1)

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Opt. Express (5)

Opt. Mater. (1)

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Optica (1)

SID Symp. Dig. Tech. Papers (10)

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Surf. Coat. Tech. (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Other (8)

R. M. Soneira. iPhone X OLED Display Technology Shoot-Out. DisplayMate Technologies Corp., 2017.

G. Walker, GD-Itronix Dynavue Technology. The Ultimate Outdoor-Readable Touch-Screen Display (Rugged PC Review, 2007).

DisplayMate Technologies Corp, http://www.displaymate.com/

R. M. Soneira, Tablet and Smartphone Displays under Bright Ambient Lighting Shoot-Out Master Photo Grid for Viewing Screen Shots of all the Displays (DisplayMate Technologies Corp., 2012).

T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed. (John Wiley & Sons, 2017).

Z. Ge and S. T. Wu, Transflective Liquid Crystal Displays (John Wiley & Sons, 2010).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014).

K. Müllen and U. Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic diagram of an LCD.
Fig. 2
Fig. 2 Schematic diagram of an OLED.
Fig. 3
Fig. 3 Calculated ACR as a function of different ambient light conditions for LCD and OLED smartphones. Here, we assume LCD peak brightness is 600/800 nits and OLED peak brightness is 600 nits, and the surface reflectance is 4.2% for both LCD and OLED.
Fig. 4
Fig. 4 Calculated ACR as a function of different ambient light conditions for LCD and OLED TVs. Here we assume LCD peak brightness is 1500 nits and OLED peak brightness is 800 nits, and the surface reflectance is 1.5% for both LCD and OLED.
Fig. 5
Fig. 5 Calculated ACR as a function of different ambient light conditions for LCD and OLED public displays. Here we assume LCD peak brightness is 2500 nits and OLED peak brightness is 1200 nits, and the surface reflectance is 1.5% for both LCD and OLED.
Fig. 6
Fig. 6 (a) Schematic diagram of optical configuration of broadband circular polarizer; (b) Calculated light leakage at different wavelengths at normal angle (θ = 0°, φ = 0°); and (c) Calculated light leakage at different polar angles (φ = 0°).
Fig. 7
Fig. 7 Calculated angular-dependent luminous reflectance of a multi-layer OLED device.
Fig. 8
Fig. 8 (a) Calculated luminous reflectance of BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED smartphones.
Fig. 9
Fig. 9 Simulated ambient isocontrast contour for (a) LCD smartphone at 500 lux, where ACRmax = 86.1:1, ACRmin = 1.3:1, (b) OLED smartphone at 500 lux, where ACRmax = 89.2:1, ACRmin = 2.0:1, (c) LCD smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1, and (b) OLED smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1. Both LCD and OLED are assumed to have the same peak brightness: 600 nits.
Fig. 10
Fig. 10 (a) Calculated luminous reflectance of AR-coated BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED TVs.
Fig. 11
Fig. 11 Simulated ambient isocontrast contour for (a) LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) OLED TV at 50 lux, where ACRmax = 3362.2:1, ACRmin = 27.8:1. The peak brightness for LCD is 1500 nits and for OLED is 800 nits.
Fig. 12
Fig. 12 Simulated ambient isocontrast contour for (a) LCD public display at 10,000 lux, where ACRmax = 61.2:1, ACRmin = 1.2:1, and (b) OLED public display at 10,000 lux, where ACRmax = 29.5:1, ACRmin = 1.2:1. The peak brightness for LCD is 2500 nits and for OLED is 1200 nits.
Fig. 13
Fig. 13 Simulated ambient isocontrast contour for (a) conventional LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) new LCD TV with mini-LED backlight at 50 lux, where ACRmax = 7312.5:1, ACRmin = 18.8:1.
Fig. 14
Fig. 14 (a) Schematic diagram of optical configuration of newly proposed broadband and wide-view circular polarizer with two biaxial films; Calculated light leakage for (b) conventional broadband circular polarizer, and (c) new broadband circular polarizer.
Fig. 15
Fig. 15 Simulated ambient isocontrast contour for (a) OLED TV at 50 lux with conventional broadband circular polarizer, where ACRmax = 3362.2:1, ACRmin = 27.8:1, and (b) OLED TV at 50 lux with new broadband circular polarizer, where ACRmax = 3363.3:1, ACRmin = 29.4:1.

Tables (1)

Tables Icon

Table 1 Comparison between measured ACR and calculated ACR.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ACR= L on + L ambient R L L off + L ambient R L ,
R L = λ 1 λ 2 V(λ)S(λ)R(λ)dλ λ 1 λ 2 V(λ)S(λ)dλ ,
AC R LCD (θ,ϕ)= L on (θ,ϕ)+ R 1 L off (θ,ϕ)+ R 1 , R 1 = L ambient R L_surface (θ,ϕ).
AC R OLED (θ,ϕ)= L on (θ,ϕ)+ R 1 + R 2 L off (θ,ϕ)+ R 1 + R 2 , R = 1 L ambient R L_surface (θ,ϕ), R 2 = L ambient [1 R L_surface (θ,ϕ)] R L_OLED (θ,ϕ)C P leak (θ,ϕ).

Metrics