Abstract

We demonstrate, both experimentally and numerically, all-optical mode and wavelength conversion both within the C-band and between the C- and L-bands. This is achieved by exploiting phase-matched inter-modal four-wave-mixing processes among the spatial modes of a three-mode fiber. By increasing the number of spatial modes supported by the fiber and tailoring their dispersion profile, it is envisaged that broadband operation over widely separated wavelength bands can be achieved in a single multi-mode fiber using this method.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Inter-modal four-wave mixing study in a two-mode fiber

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani
Opt. Express 24(26) 30338-30349 (2016)

Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber

H. Zhang, M. Bigot-Astruc, L. Bigot, P. Sillard, and J. Fatome
Opt. Express 27(11) 15413-15425 (2019)

All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber

Wei Pan, Qiang Jin, Xibin Li, and Shiming Gao
J. Opt. Soc. Am. B 32(12) 2417-2424 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
    [Crossref]
  2. H. N. Tan, T. Inoue, K. Solis-Trapala, S. Petit, Y. Oikawa, K. Ota, S. Takasaka, T. Yagi, M. Pelusi, and S. Namiki, “On the Cascadability of All-Optical Wavelength Converter for High-Order QAM Formats,” J. Lightwave Technol. 34(13), 3194–3205 (2016).
    [Crossref]
  3. S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly-nonlinear optical fiber,” IEICE Trans. Electron. E88C(5), 859–869 (2005).
    [Crossref]
  4. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
    [Crossref]
  5. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  6. J. F. Víctor, F. Rancaño, P. Parmigiani, P. Petropoulos, and D. J. Richardson, “100-GHz Grid-Aligned Multi-Channel Polarization Insensitive Black-Box Wavelength Converter,” J. Lightwave Technol. 32(17), 3027–3035 (2014).
    [Crossref]
  7. J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in CLEO US (2017), paper JTh5A.8.
  8. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fibers,” Optica 2(1), 14–17 (2015).
    [Crossref]
  9. J. M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Brès, N. Alic, B. Stossel, K. Rottwitt, and S. Radic, “730-nm optical parametric conversion from near- to short-wave infrared band,” Opt. Express 16(8), 5435–5443 (2008).
    [Crossref] [PubMed]
  10. J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
    [Crossref]
  11. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [Crossref] [PubMed]
  12. F. Parmigiani, Y. Jung, P. Horak, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “C- to L- band Wavelength Conversion Enabled by Parametric Processes in a Few Mode Fiber,” in OFC (2017), paper Th1F.4.
  13. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
    [Crossref] [PubMed]
  14. R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
    [Crossref]
  15. M. Esmaeelpour, R.-J. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power Fluctuations of Intermodal Four-Wave Mixing in Few-Mode Fibers,” J. Lightwave Technol. 35(12), 2429–2435 (2017).
    [Crossref]
  16. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  17. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).
  18. L. Grüner-Nielsen, S. Herstrom, S. Dasgupta, D. Richardson, and D. Jakobsen, C. Lundström, P. Andrekson, M.E.V. Pedersen, B. Pálsdóttir, ‘Silica-based highly nonlinear fibers with a high SBS threshold,’ in IEEE Winter Topicals (2011), pp. 171–172.
  19. F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.
  20. J. G. Koefoed, S. M. M. Friis, J. B. Christensen, and K. Rottwitt, “Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations,” Opt. Express 25(17), 20835–20849 (2017).
    [Crossref] [PubMed]
  21. M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.
  22. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
    [Crossref]

2017 (2)

2016 (2)

2015 (2)

J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fibers,” Optica 2(1), 14–17 (2015).
[Crossref]

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

2014 (1)

2013 (2)

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2009 (1)

2008 (1)

2005 (1)

S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly-nonlinear optical fiber,” IEICE Trans. Electron. E88C(5), 859–869 (2005).
[Crossref]

2002 (3)

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).

2001 (1)

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

1998 (1)

Alic, N.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

Baib, C.

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

Begleris, I.

Brar, K.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

Brès, C.

Centanni, J. C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

Chavez Boggio, J. M.

Chen, Y.

Chraplyvy, A. R.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).

Christensen, J. B.

Demas, J.

Esmaeelpour, M.

Essiambre, R.-J.

M. Esmaeelpour, R.-J. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power Fluctuations of Intermodal Four-Wave Mixing in Few-Mode Fibers,” J. Lightwave Technol. 35(12), 2429–2435 (2017).
[Crossref]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Fatome, J.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fontaine, N. K.

Friis, S. M. M.

Geisler, T.

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

Gnauck, A. H.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Grüner-Nielsen, L.

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

Guasoni, M.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

Headley, C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Horak, P.

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
[Crossref] [PubMed]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

Hua, W.

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

Inoue, T.

Jauregui, C.

Jiang, R.

Jiang, X.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Jorgensen, C. G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

Jung, Y.

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
[Crossref] [PubMed]

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

Karlsson, M.

Knutzen, M.

Koefoed, J. G.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Limpert, J.

Lingle, R.

M. Esmaeelpour, R.-J. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power Fluctuations of Intermodal Four-Wave Mixing in Few-Mode Fibers,” J. Lightwave Technol. 35(12), 2429–2435 (2017).
[Crossref]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

McKinstrie, C. J.

S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly-nonlinear optical fiber,” IEICE Trans. Electron. E88C(5), 859–869 (2005).
[Crossref]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).

Mestre, M. A.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Namiki, S.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nodop, D.

Oikawa, Y.

Ota, K.

Parmigiani, F.

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
[Crossref] [PubMed]

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

Parmigiani, P.

Pelusi, M.

Petit, S.

Petropoulos, P.

Radic, S.

J. M. Chavez Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Brès, N. Alic, B. Stossel, K. Rottwitt, and S. Radic, “730-nm optical parametric conversion from near- to short-wave infrared band,” Opt. Express 16(8), 5435–5443 (2008).
[Crossref] [PubMed]

S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly-nonlinear optical fiber,” IEICE Trans. Electron. E88C(5), 859–869 (2005).
[Crossref]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).

Ramachandran, S.

Rancaño, F.

Raybon, G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

Richardson, D. J.

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24(26), 30338–30349 (2016).
[Crossref] [PubMed]

J. F. Víctor, F. Rancaño, P. Parmigiani, P. Petropoulos, and D. J. Richardson, “100-GHz Grid-Aligned Multi-Channel Polarization Insensitive Black-Box Wavelength Converter,” J. Lightwave Technol. 32(17), 3027–3035 (2014).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

Rishøj, L.

Rottwitt, K.

Ryf, R.

M. Esmaeelpour, R.-J. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power Fluctuations of Intermodal Four-Wave Mixing in Few-Mode Fibers,” J. Lightwave Technol. 35(12), 2429–2435 (2017).
[Crossref]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Schimpf, D.

Solis-Trapala, K.

Steinvurzel, P.

Stossel, B.

Sun, Y.

M. Esmaeelpour, R.-J. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, and R. Lingle, “Power Fluctuations of Intermodal Four-Wave Mixing in Few-Mode Fibers,” J. Lightwave Technol. 35(12), 2429–2435 (2017).
[Crossref]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Suna, W.

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

Tai, B.

Takasaka, S.

Tan, H. N.

Tkach, R. W.

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

Toulouse, J.

Tünnermann, A.

Víctor, J. F.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Windmiller, J. R.

Yagi, T.

Zhao, L.

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002).

IEEE Photonics Technol. Lett. (3)

J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,” IEEE Photonics Technol. Lett. 13(3), 194–196 (2001).
[Crossref]

R.-J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers,” IEEE Photonics Technol. Lett. 25(6), 539–542 (2013).
[Crossref]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric-gain synthesis using nondegenerate-pump four-wave mixing,” IEEE Photonics Technol. Lett. 14(10), 1406–1408 (2002).
[Crossref]

IEICE Trans. Electron. (1)

S. Radic and C. J. McKinstrie, “Optical amplification and signal processing in highly-nonlinear optical fiber,” IEICE Trans. Electron. E88C(5), 859–869 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Switching Networking (1)

L. Zhao, W. Suna, W. Hua, and C. Baib, “Wavelength contention resolution in WSS based ROADMs,” Opt. Switching Networking 15, 67–74 (2015).
[Crossref]

Optica (1)

Other (5)

J. Demas, L. Rishøj, X. Liu, G. Prabhakar, and S. Ramachandran, “High-power, wavelength-tunable NIR all-fiber lasers via intermodal four-wave mixing,” in CLEO US (2017), paper JTh5A.8.

F. Parmigiani, Y. Jung, P. Horak, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “C- to L- band Wavelength Conversion Enabled by Parametric Processes in a Few Mode Fiber,” in OFC (2017), paper Th1F.4.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal Four-Wave-Mixing and Parametric Amplification in km-long Multi-Mode Fibers,” J. Lightwave Technol.in press.

L. Grüner-Nielsen, S. Herstrom, S. Dasgupta, D. Richardson, and D. Jakobsen, C. Lundström, P. Andrekson, M.E.V. Pedersen, B. Pálsdóttir, ‘Silica-based highly nonlinear fibers with a high SBS threshold,’ in IEEE Winter Topicals (2011), pp. 171–172.

F. Parmigiani, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “Elliptical Core Few Mode Fibers for Multiple-Input Multiple Output-free Space Division Multiplexing Transmission,” IEEE Photonics Technol. Lett.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the relative inverse group velocities versus wavelength of the modes supported by a multi-mode waveguide, where the dotted red line highlights inter-modal phase matching among the pump(s), signal(s) and BS idler(s) in a multi–pump configuration. Broadband operation is guaranteed if the IGV curves of the modes are identical shifted replicas of each other in the band of interest. Inset: corresponding simulated intensity profiles of the modes.
Fig. 2
Fig. 2 a) Experimental set-up of the inter-modal four-wave mixing based mode and wavelength converter using a three-mode EC-FMF, supporting the LP01 and LP11 mode groups. b) Corresponding measured relative IGV curves of the supported LP01, LP11a and LP11b as a function of wavelength.
Fig. 3
Fig. 3 MDMUX spectra of LP01 port (a) and LP11a port (b) for λP1 and λS equal to 1537.4 nm or 1537.9 nm, respectively, and λP2 equal to 1557.3 nm, 1562.4 nm, 1567.13 nm, and 1578 nm, respectively, when P1 and S excite the LP01 mode of the fiber and P2 excites the LP11a mode.
Fig. 4
Fig. 4 Measured ((a) and (c)) and simulated ((b) and (c)) conversion efficiencies of the PC (top line) and BS (bottom line) processes versus Signal to Pump 1 wavelength detuning, when the other pump excites the second mode (LP11a) of the fiber at different wavelengths around the phase matching condition, i.e. λP1 = 1537.4 nm, while λP2 = 1561.3 nm (−1 nm from PM), λP2 = 1562.4 nm (at PM) and λP2 = 1563 nm ( + 0.6 nm from PM).
Fig. 5
Fig. 5 Measured and simulated conversion efficiencies of the BS and PC processes versus signal to P1 wavelength detuning, when the other pump excites the second mode (LP11a) of the fiber detuned of about −3 nm (top row) and + 3 nm (bottom row) from the phase matching condition (i. e. λP2 = 1562.4 nm).
Fig. 6
Fig. 6 MDMUX spectra of LP01 port (a) and LP11b port (b) for λP1 and λS equal to 1537.4 nm and 1537.9 nm, respectively, and λP2 equal to 1562.4 nm, 1573 nm, 1578 nm or 1583 nm, respectively, when P1 and S excite the LP01 mode of the fiber and P2 excites the LP11b mode. c) Conversion efficiency of the BS and PC processes at the phase matched wavelengths versus the signal to Pump1 wavelength detuning.

Metrics