Abstract

Organic semiconductors have potentials for a broad range of applications. However, they are difficult to be integrated with traditional inorganic material to meet the need of further applications. Based on low-temperature silicon nitride (SiNx) deposition technique, here we demonstrate a hybrid structure fabricated by directly depositing high-quality SiNx on organic polymer film Poly[2-(2',5′-bis(2”-ethylhexyloxy)- phenyl) −1,4-phenylene vinylene] (BEHP-PPV). Stacked BEHP-PPV/SiNx hybrid structures with different periods are obtained and their optical properties are systematically characterized. Moreover, a group of BEHP-PPV embedded SiNx micro-disks are fabricated and amplification of spontaneous emission (ASE) is observed under optical pumping, further confirming that BEHP-PPV remains stable after the whole fabrication process. Our technique offers a platform to fabricate organic/inorganic hybrid optical devices compatible with integrated components.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-low temperature silicon nitride photonic integration platform

Zengkai Shao, Yujie Chen, Hui Chen, Yanfeng Zhang, Fangxing Zhang, Jian Jian, Zeming Fan, Lin Liu, Chunchuan Yang, Lidan Zhou, and Siyuan Yu
Opt. Express 24(3) 1865-1872 (2016)

White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates

Tzung-Fang Guo, Ten-Chin Wen, Yi-Shun Huang, Ming-Wei Lin, Chuan-Cheng Tsou, and Chia-Tin Chung
Opt. Express 17(23) 21205-21215 (2009)

Photonic crystal slabs in flexible organic light-emitting diodes

Arfat Pradana and Martina Gerken
Photon. Res. 3(2) 32-37 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
    [Crossref]
  2. N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renew. Sustain. Energy Rev. 16(5), 2696–2723 (2012).
    [Crossref]
  3. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
    [Crossref] [PubMed]
  4. H. C. Yeh and M. C. Hsieh, “Tuning the emission color of organic semiconductor films with cholesteric liquid crystals,” Opt. Express 25(10), 11211–11216 (2017).
    [Crossref] [PubMed]
  5. Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
    [Crossref]
  6. C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
    [Crossref] [PubMed]
  7. Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41(2), 269–272 (2016).
    [Crossref] [PubMed]
  8. M. Mantoku, M. Ichida, I. Umezu, A. Sugimura, and T. Aoki-Matsumoto, “Lasing in organic mixed-crystal thin films with cavities composed of naturally formed cracks,” Opt. Lett. 42(8), 1528–1531 (2017).
    [Crossref] [PubMed]
  9. T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
    [Crossref] [PubMed]
  10. D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
    [Crossref] [PubMed]
  11. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  12. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
    [Crossref]
  13. I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref] [PubMed]
  14. A. J. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
    [Crossref] [PubMed]
  15. W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
    [Crossref] [PubMed]
  16. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
    [Crossref]
  17. T. W. Beahr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
    [Crossref]
  18. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
    [Crossref] [PubMed]
  19. B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
    [Crossref]
  20. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  21. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  22. P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
    [Crossref]
  23. J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
    [Crossref]
  24. S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
    [Crossref]
  25. H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
    [Crossref]
  26. D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
    [Crossref]
  27. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
    [Crossref] [PubMed]
  28. Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
    [Crossref]
  29. P. J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten, S. Suckow, A. R. S. Kandada, B. Chmielak, A. Petrozza, T. Wahlbrink, and A. L. Giesecke, “Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication,” Opt. Express 25(12), 13199–13206 (2017).
    [Crossref] [PubMed]
  30. L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
    [Crossref]
  31. B. M. Omer, “Optical Properties of Mdmo-Ppv and MDMO-PPV/ [6,6]-Phenyl C61-Butyric Acid 3-Ethylthiophene ester thin films,” Int. J. Org. Electron. 2(2), 1–7 (2013).
    [Crossref]

2017 (5)

2016 (5)

2015 (1)

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

2013 (5)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

B. M. Omer, “Optical Properties of Mdmo-Ppv and MDMO-PPV/ [6,6]-Phenyl C61-Butyric Acid 3-Ethylthiophene ester thin films,” Int. J. Org. Electron. 2(2), 1–7 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

2012 (2)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renew. Sustain. Energy Rev. 16(5), 2696–2723 (2012).
[Crossref]

2011 (1)

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

2010 (2)

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2008 (2)

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

T. W. Beahr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

2007 (2)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

2006 (2)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

2004 (1)

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

2000 (2)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
[Crossref] [PubMed]

1999 (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Agarwal, A. M.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Aoki-Matsumoto, T.

Aubert, T.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

Azuma, K.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Beahr-Jones, T. W.

T. W. Beahr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

Bettotti, P.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Bisschop, S.

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Bittner, A.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Bolten, J.

Bradley, D. D. C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Brainis, E.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Bredas, J. L.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Burroughes, J. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Capelli, R.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Cazzanelli, M.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Cegielski, P. J.

Chen, B.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Chen, H.

Chen, Y.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref] [PubMed]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Chmielak, B.

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Dawson, M. D.

De Geyter, B.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Dergez, D.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Dhoble, S. J.

N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renew. Sustain. Energy Rev. 16(5), 2696–2723 (2012).
[Crossref]

Dos Santos, D. A.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Elgaid, K.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

Emplit, P.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Facchetti, A.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Fan, Z.

Finkelstein, H.

Foucher, C.

Friend, R. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Gather, M. C.

A. J. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

Geiregat, P.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Generali, G.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Giesecke, A. L.

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Gu, E.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Guilhabert, B.

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
[Crossref] [PubMed]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Gymer, R. W.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Hander, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Hassinen, A.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Hens, Z.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Herrnsdorf, J.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Hochberg, M. J.

T. W. Beahr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

Holmes, A. B.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Hsieh, M. C.

Ichida, M.

Jen, A. K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Jen, A. K. Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Jian, J.

Kandada, A. R. S.

Kanibolotsky, A. L.

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
[Crossref] [PubMed]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Kimerling, L. C.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Komorowska, K.

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Konishi, Y.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Kuehne, A. J.

A. J. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Laurand, N.

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Lerch, H.

Li, H.

Li, S.

Lin, H.-Y. G.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Lin, P. T.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Liu, L.

Logdlund, M.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Mackintosh, A. R.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Mahrt, R. F.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Mantoku, M.

Marks, R. N.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

McQuade, D. T.

D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
[Crossref] [PubMed]

Merget, F.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Muccini, M.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Negro, L. D.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Neutzner, S.

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Omer, B. M.

B. M. Omer, “Optical Properties of Mdmo-Ppv and MDMO-PPV/ [6,6]-Phenyl C61-Butyric Acid 3-Ethylthiophene ester thin films,” Int. J. Org. Electron. 2(2), 1–7 (2013).
[Crossref]

Pacifici, D.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Pavesi, L.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Pethrick, R. A.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Petrozza, A.

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Porschatis, C.

Pullen, A. E.

D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
[Crossref] [PubMed]

Rainò, G.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Romero-García, S.

Salaneck, W. R.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Saleh, A. A.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

Schalko, J.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Schmid, U.

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Shao, Z.

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Sheng, C.

Shi, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Singh, V.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Skabara, P. J.

C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, N. Laurand, and M. D. Dawson, “RGB and white-emitting organic lasers on flexible glass,” Opt. Express 24(3), 2273–2280 (2016).
[Crossref] [PubMed]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Stöferle, T.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Suckow, S.

Sugimura, A.

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Swager, T. M.

D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
[Crossref] [PubMed]

Taliani, C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Thayne, I.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

Thejo Kalyani, N.

N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renew. Sustain. Energy Rev. 16(5), 2696–2723 (2012).
[Crossref]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Tiwald, T.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Toffanin, S.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Tong, F.

Turnbull, G. A.

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

Ueno, S.

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Umezu, I.

Usta, H.

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Van Thourhout, D.

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Wahlbrink, T.

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Wang, M.

Wang, Y.

T. Zhai, F. Tong, Y. Wang, X. Wu, S. Li, M. Wang, and X. Zhang, “Polymer lasers assembled by suspending membranes on a distributed feedback grating,” Opt. Express 24(19), 22028–22033 (2016).
[Crossref] [PubMed]

Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41(2), 269–272 (2016).
[Crossref] [PubMed]

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Wilkinson, C.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

Witzens, J.

Wu, X.

Xie, W.

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Yang, C.

Yang, X.

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

Yeh, H. C.

Yota, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Yu, S.

Zhai, T.

Zhang, F.

Zhang, X.

Zhang, Y.

Zhong, F.

Zhou, H.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

Zhou, L.

Zhu, Y.

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Zhu, W. Xie, S. Bisschop, T. Aubert, E. Brainis, P. Geiregat, Z. Hens, and D. Van Thourhout, “On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping,” ACS Photonics 4(10), 2446–2452 (2017).
[Crossref]

Adv. Mater. (1)

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot-silicon-nitride microdisk lasers,” Adv. Mater. 29(16), 1604866 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
[Crossref]

Appl. Phys. Lett. (2)

B. De Geyter, K. Komorowska, E. Brainis, P. Emplit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett. 101(16), 161101 (2012).
[Crossref]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics- A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[Crossref]

Appl. Surf. Sci. (1)

D. Dergez, J. Schalko, A. Bittner, and U. Schmid, “Fundamental properties of a-SiNx:H thin films deposited by ICP-PECVD for MEMS applications,” Appl. Surf. Sci. 284, 348–353 (2013).
[Crossref]

Chem. Rev. (3)

I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chem. Rev. 100(7), 2537–2574 (2000).
[Crossref] [PubMed]

A. J. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref] [PubMed]

Int. J. Org. Electron. (1)

B. M. Omer, “Optical Properties of Mdmo-Ppv and MDMO-PPV/ [6,6]-Phenyl C61-Butyric Acid 3-Ethylthiophene ester thin films,” Int. J. Org. Electron. 2(2), 1–7 (2013).
[Crossref]

J. Phys. Chem. C (1)

T. W. Beahr-Jones and M. J. Hochberg, “Polymer silicon hybrid systems A platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhenced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, “Low-hydrogen-content silicon nitride deposited at room temperature by inductively coupled plasma deposition,” Jpn. J. Appl. Phys. 45, 8838–8892 (2006).
[Crossref]

Nat. (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nat. 397(6715), 121–128 (1999).
[Crossref]

Nat. Mater. (2)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, “Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes,” Nat. Mater. 9(6), 496–503 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Commun. (1)

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Org. Electron. (1)

Y. Chen, J. Herrnsdorf, B. Guilhabert, A. L. Kanibolotsky, A. R. Mackintosh, Y. Wang, R. A. Pethrick, E. Gu, G. A. Turnbull, and P. J. Skabara, “Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite,” Org. Electron. 12(1), 62–69 (2011).
[Crossref]

Renew. Sustain. Energy Rev. (1)

N. Thejo Kalyani and S. J. Dhoble, “Organic light emitting diodes: Energy saving lighting technology—A review,” Renew. Sustain. Energy Rev. 16(5), 2696–2723 (2012).
[Crossref]

Thin Solid Films (1)

S. Ueno, Y. Konishi, and K. Azuma, “The structures of highly transparent, water impermeable SiNx films prepared using surface-wave-plasma chemical vapor deposition for organic light-emitting displays,” Thin Solid Films 580, 106–110 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the multi-period structure on quartz substrate (brown layer) composed of spin-coated polymer film (green layer) and SiNx layer (blue layer). (b) SEM image of the cross section of TPS. (c) Photograph of SPS, DPS, and TPS (left to right) under UV light illumination.

Fig. 2
Fig. 2

(a) Fluorescence (red line) and absorption (black line) spectrum of the neat spin-coated BEHP-PPV film on quartz substrate. (b) Fluorescence (red line), absorption (black line), and emission (blue line) spectrum of DPS. (c) Emission spectrum of DPS pumped by a 420-nm, 10-Hz pulse laser with different energy density. (d) Peak intensity and FWHM of emission peak of DPS as a function of the pump energy density. As the pump energy density increases, a rapidly narrowing and rising emission peak around 516 nm can be observed. (e) Gain coefficients of SPS, DPS, and TPS pumped by 10 Hz pulse laser at 420nm with different energy density. The vertical dashed lines indicate the threshold of SPS (black), DPS (red), and TPS (blue), respectively. (f) Lifetimes of SPS, DPS, and TPS pumped by picosecond pulse laser at 420nm with a duration of about 21 ps.

Fig. 3
Fig. 3

(a) Schematic picture of the multi-layer micro-disk test setup. Pump pulse laser is focused on the backside of the micro-disk and its emission signal is collected into a fiber coupled spectrometer. Images of micro-disk are captured by a coaxial camera. (b) SEM image of the profile of the multi-layer micro-disk (R = 76.6 μm) with smooth sidewall. The thickness of SiNx, PPV and quartz is 367, 123, and 1280 nm, respectively.

Fig. 4
Fig. 4

(a) Photograph of six groups of micro-disks under UV light illumination. (b) Fluorescence spectrum of the micro-disk with radius of 261.5 μm. (c) Emission spectrum of micro-disk with radius of 261.5 μm pumped by a 420-nm and 10-Hz pulse laser with different energy density. The inset picture shows the micro-disk under white light illumination (top) and the pulse laser pump (bottom). (d) Peak intensity of the emission peaks of micro-disks with radius of 261.5 and 52.3 μm, respectively, indicating a threshold around 6.61 mJ/cm2 for the micro-disk with its radius of 261.5 μm.

Metrics