Abstract

Tomographic phase contrast imaging using hard X-rays is instrumental in revealing and understanding the three-dimensional (3D) anatomic structure of biological tissues. However, phase contrast imaging is often limited to synchrotron radiation sources to which access is limited and highly competitive. Therefore, it is critical to enable high-quality phase contrast tomography using lab-based X-ray sources. We present a lab-based soft tissue 3D imaging approach through optimised in-line phase contrast computed tomography, building upon and going beyond previous work of Bidola et al. [Opt Express 23(23), 30000-30013 (2015)]. Murine soleus muscle was used as a test specimen to systemically optimise source-to-sample and sample-to-detector distances, exposure time and the critical ratio used for Paganin phase retrieval before tomographic reconstruction. Larger propagation distances combined with longer exposure times resulted in improved image quality. Whilst the contrast-to-noise ratio of lab-based phase contrast imaging was found to be lower than that of synchrotron-based imaging, important microscopic soft tissue features, such as nerves, could well be distinguished in 3D from surrounding tissue for both imaging modalities. This shows that lab-based X-ray sources present a viable alternative to synchrotron radiation sources for tomographic phase contrast imaging of soft tissues.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography

Ilian Häggmark, William Vågberg, Hans M. Hertz, and Anna Burvall
Opt. Express 25(26) 33543-33558 (2017)

Assessment of the use of a diffuser in propagation-based x-ray phase contrast imaging

S. C. Irvine, K. S. Morgan, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu
Opt. Express 18(13) 13478-13491 (2010)

Optimization of propagation-based phase-contrast imaging at a laboratory setup

Pidassa M. Bidola, Irene Zanette, Klaus Achterhold, Christian Holzner, and Franz Pfeiffer
Opt. Express 23(23) 30000-30013 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
    [PubMed]
  2. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
    [PubMed]
  3. K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).
  4. V. V. Lider and M. V. Kovalchuk, “X-ray phase-contrast methods,” Crystallogr. Rep. 58(6), 769–787 (2013).
  5. A. Olivo and E. Castelli, “X-ray phase contrast imaging: From synchrotrons to conventional sources,” Riv. Nuovo Cim. 37(9), 467–508 (2014).
  6. S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
  7. D. Zhang, F. Meng, J. Rong, X. Wu, and H. Liu, “In-line phase-sensitive X-ray imaging,” in Advances in Medical Physics, D. J. Godfrey, S. K. Das, and A. B. Wolbarst, eds. (Medical Physics Publishing, 2014), p. 143-169.
  8. M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
    [PubMed]
  9. B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
    [PubMed]
  10. S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
    [PubMed]
  11. S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
    [PubMed]
  12. X. Wu, H. Liu, and A. Yan, “X-ray phase-attenuation duality and phase retrieval,” Opt. Lett. 30(4), 379–381 (2005).
    [PubMed]
  13. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
    [PubMed]
  14. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
  15. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).
  16. P. M. Bidola, I. Zanette, K. Achterhold, C. Holzner, and F. Pfeiffer, “Optimization of propagation-based phase-contrast imaging at a laboratory setup,” Opt. Express 23(23), 30000–30013 (2015).
    [PubMed]
  17. F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).
  18. M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.
  19. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
    [PubMed]
  20. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
  21. M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556v1 (2017).
  22. R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
    [PubMed]
  23. S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
    [PubMed]
  24. R. Hofmann, J. Moosmann, and T. Baumbach, “Criticality in single-distance phase retrieval,” Opt. Express 19(27), 25881–25890 (2011).
    [PubMed]
  25. J. Moosmann, R. Hofmann, A. V. Bronnikov, and T. Baumbach, “Nonlinear phase retrieval from single-distance radiograph,” Opt. Express 18(25), 25771–25785 (2010).
    [PubMed]
  26. J. Moosmann, R. Hofmann, and T. Baumbach, “Single-distance phase retrieval at large phase shifts,” Opt. Express 19(13), 12066–12073 (2011).
    [PubMed]
  27. L. D. Turner, B. B. Dhal, J. P. Hayes, A. P. Mancuso, K. A. Nugent, D. Paterson, R. E. Scholten, C. Q. Tran, and A. G. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express 12(13), 2960–2965 (2004).
    [PubMed]
  28. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
    [PubMed]
  29. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19(11), 10359–10376 (2011).
    [PubMed]

2017 (2)

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

2015 (2)

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

P. M. Bidola, I. Zanette, K. Achterhold, C. Holzner, and F. Pfeiffer, “Optimization of propagation-based phase-contrast imaging at a laboratory setup,” Opt. Express 23(23), 30000–30013 (2015).
[PubMed]

2014 (3)

A. Olivo and E. Castelli, “X-ray phase contrast imaging: From synchrotrons to conventional sources,” Riv. Nuovo Cim. 37(9), 467–508 (2014).

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

2013 (2)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[PubMed]

V. V. Lider and M. V. Kovalchuk, “X-ray phase-contrast methods,” Crystallogr. Rep. 58(6), 769–787 (2013).

2012 (1)

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
[PubMed]

2011 (4)

2010 (2)

2009 (1)

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

2008 (1)

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

2005 (1)

2004 (2)

2002 (2)

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

1997 (1)

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

Abela, R.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Achterhold, K.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

P. M. Bidola, I. Zanette, K. Achterhold, C. Holzner, and F. Pfeiffer, “Optimization of propagation-based phase-contrast imaging at a laboratory setup,” Opt. Express 23(23), 30000–30013 (2015).
[PubMed]

Alves, F.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Battaglia, G.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Baumbach, T.

Betemps, R.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Bidola, P. M.

Biffi, S.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Bravin, A.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[PubMed]

Bronnikov, A. V.

Brun, F.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Bucci, D.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Bukreeva, I.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Bunk, O.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

Burvall, A.

Campi, G.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Castelli, E.

A. Olivo and E. Castelli, “X-ray phase contrast imaging: From synchrotrons to conventional sources,” Riv. Nuovo Cim. 37(9), 467–508 (2014).

Cedola, A.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Chen, Q.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Clough, G. F.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[PubMed]

Dal Monego, S.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

David, C.

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

Davis, T. J.

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

Dhal, B. B.

Dierolf, M.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Dullin, C.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Fife, J.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Fratini, M.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Gao, D.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).

Garrovo, C.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Giove, F.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Gleich, B.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Gradl, R.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Groso, A.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

Günther, B.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Gureyev, T. E.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

Hayes, J. P.

Hehn, L.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Henein, S.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

Hertz, H. M.

Hintermüller, C.

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

Hofmann, R.

Holzner, C.

Isenegger, A.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Katsamenis, O. L.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Kovalchuk, M. V.

V. V. Lider and M. V. Kovalchuk, “X-ray phase-contrast methods,” Crystallogr. Rep. 58(6), 769–787 (2013).

Lange, M.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Larsson, D. H.

Larsson, E.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Lider, V. V.

V. V. Lider and M. V. Kovalchuk, “X-ray phase-contrast methods,” Crystallogr. Rep. 58(6), 769–787 (2013).

Liu, H.

Lorenzon, A.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Lundström, U.

Mader, K.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Mancuso, A. P.

Marone, F.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

Mastrogiacomo, M.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Mavrogordato, M. N.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Mayo, S. C.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
[PubMed]

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

McDonald, S. A.

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

Meister, D.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Mikuljan, G.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Miller, P. R.

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

Modregger, P.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Mohammadi, S.

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Mokso, R.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Moosmann, J.

Morgan, K. S.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Nesterets, Y. I.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

Nugent, K. A.

Olivo, A.

A. Olivo and E. Castelli, “X-ray phase contrast imaging: From synchrotrons to conventional sources,” Riv. Nuovo Cim. 37(9), 467–508 (2014).

Paganin, D.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

Parry, D. J.

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

Paterson, D.

Peele, A. G.

Pfeiffer, F.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

P. M. Bidola, I. Zanette, K. Achterhold, C. Holzner, and F. Pfeiffer, “Optimization of propagation-based phase-contrast imaging at a laboratory setup,” Opt. Express 23(23), 30000–30013 (2015).
[PubMed]

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

Pinzer, B.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Pogany, A.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).

Requardt, H.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Roose, T.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Schneider, P.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Scholten, R. E.

Spanò, R.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Stampanoni, M.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Stevenson, A. W.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
[PubMed]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[PubMed]

Takman, P. A. C.

Thüring, T.

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Torrens, C.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Tran, C. Q.

Tromba, G.

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

Turner, L. D.

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

Wilkins, S. W.

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
[PubMed]

T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16(5), 3223–3241 (2008).
[PubMed]

T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first Born- and Rytov-type approximations,” Appl. Opt. 43(12), 2418–2430 (2004).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).

Wu, X.

Yan, A.

Yildirim, A. Ö.

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

Zanette, I.

Zeller-Plumhoff, B.

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

Adv. Phys. (1)

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).

AIP Conf. Proc. (1)

F. Marone, R. Mokso, P. Modregger, J. Fife, B. Pinzer, T. Thüring, K. Mader, G. Mikuljan, A. Isenegger, and M. Stampanoni, “Present and future x-ray tomographic microscopy at TOMCAT,” AIP Conf. Proc. 1365, 116-119 (2011).

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).

Crystallogr. Rep. (1)

V. V. Lider and M. V. Kovalchuk, “X-ray phase-contrast methods,” Crystallogr. Rep. 58(6), 769–787 (2013).

J. Anat. (1)

B. Zeller-Plumhoff, T. Roose, O. L. Katsamenis, M. N. Mavrogordato, C. Torrens, P. Schneider, and G. F. Clough, “Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle,” J. Anat. 230(6), 859–865 (2017).
[PubMed]

J. Microsc. (2)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002).
[PubMed]

S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207(2), 79–96 (2002).
[PubMed]

J. Synchrotron Radiat. (2)

S. Mohammadi, E. Larsson, F. Alves, S. Dal Monego, S. Biffi, C. Garrovo, A. Lorenzon, G. Tromba, and C. Dullin, “Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung,” J. Synchrotron Radiat. 21(4), 784–789 (2014).
[PubMed]

S. A. McDonald, F. Marone, C. Hintermüller, G. Mikuljan, C. David, F. Pfeiffer, and M. Stampanoni, “Advanced phase-contrast imaging using a grating interferometer,” J. Synchrotron Radiat. 16(4), 562–572 (2009).
[PubMed]

Materials (Basel) (1)

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, “In-line phase-contrast X-ray imaging and tomography for materials science,” Materials (Basel) 5(5), 937–965 (2012).
[PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006).

Opt. Express (7)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

S. W. Wilkins, Y. I. Nesterets, T. E. Gureyev, S. C. Mayo, A. Pogany, and A. W. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).

Phys. Med. Biol. (1)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58(1), R1–R35 (2013).
[PubMed]

Rev. Sci. Instrum. (1)

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).

Riv. Nuovo Cim. (1)

A. Olivo and E. Castelli, “X-ray phase contrast imaging: From synchrotrons to conventional sources,” Riv. Nuovo Cim. 37(9), 467–508 (2014).

Sci. Rep. (2)

R. Gradl, M. Dierolf, L. Hehn, B. Günther, A. Ö. Yildirim, B. Gleich, K. Achterhold, F. Pfeiffer, and K. S. Morgan, “Propagation-based phase-contrast X-ray imaging at a compact light source,” Sci. Rep. 7(1), 4908 (2017).
[PubMed]

M. Fratini, I. Bukreeva, G. Campi, F. Brun, G. Tromba, P. Modregger, D. Bucci, G. Battaglia, R. Spanò, M. Mastrogiacomo, H. Requardt, F. Giove, A. Bravin, and A. Cedola, “Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord,” Sci. Rep. 5, 8514 (2015).
[PubMed]

Other (3)

M. J. Kitchen, G. A. Buckley, T. E. Gureyev, M. J. Wallace, N. Andres-Thio, K. Uesugi, N. Yagi, and S. B. Hooper, “CT dose reduction factors in the thousands using X-ray phase contrast,” arXiv:1704.03556v1 (2017).

D. Zhang, F. Meng, J. Rong, X. Wu, and H. Liu, “In-line phase-sensitive X-ray imaging,” in Advances in Medical Physics, D. J. Godfrey, S. K. Das, and A. B. Wolbarst, eds. (Medical Physics Publishing, 2014), p. 143-169.

M. Stampanoni, A. Groso, A. Isenegger, G. Mikuljan, Q. Chen, D. Meister, M. Lange, R. Betemps, S. Henein, and R. Abela, “TOMCAT: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs,” in AIP Conference Proceedings 879 (2007), pp. 848-851.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Comparison of lab-based and synchrotron radiation-based PPCI setup. (a) & (b) Source-to-object and sample-to-detector distances in lab-based and synchrotron setup, respectively. (c) & (d) Isosurface renderings of the imaged part of the muscle for lab-based and synchrotron case, respectively, with regions of interest indicated by blue boxes, which were used for computation of the signal-to-noise and contrast-to-noise ratio levels. (e) & (f) Reconstructed tomographic slices through a central plane of the muscle for lab-based and synchrotron case, respectively, depicting regions 1-6 used to compute the signal-to-noise and contrast-to-noise ratio and the region (labelled ‘LP’) in which line profiles were recorded.
Fig. 2
Fig. 2 Image quality from PPCI on a lab-based X-ray microscope for different δ/μ ratios. (a) Signal-to-noise ratio or SNR (black solid line) and contrast-to-noise ratio or CNR (blue dashed line) and (b) line profiles over two feature boundaries for varying δ/μ ratios at position RIIILab and adjusted exposure time on a lab-based X-ray microscope. δ/μ ratios for paraffin wax and water resulted in low SNR and CNR ratios. Small δ/μ ratios led to enhanced feature boundaries within tomographic reconstructions, whilst larger δ/μ ratios resulted in strong smoothing of feature boundaries. The optimum ratio δ/μ was thus identified in-between those extremes, in the range of 4.98E-6 m and 4.98E-7 m. The selected value of 1.35E-6 m for δ/μ is highlighted by the vertical red dotted line in (a).
Fig. 3
Fig. 3 Detail view of a tomographically reconstructed slice of a murine soleus muscle for various δ/μ ratios assessed by PPCI on a lab-based X-ray microscope. For increasing δ/μ ratios image blurring becomes dominant due to Paganin phase retrieval, which has low-pass filtering characteristics. For low δ/μ ratios, enhanced feature boundaries were observed due to X-ray interference, which is only weakly low-pass filtered during Paganin phase retrieval. δ/μ = 1.35E-6 m in-between these extremes provides visually good results. Scale bar = 50 μm.
Fig. 4
Fig. 4 Image quality from PPCI on a lab-based X-ray microscope for different propagation distances. (a) Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of tomographic PPCI data for different effective propagation distances. Both SNR and CNR increased for larger X-ray propagation distances, where reduced X-ray flux loss has been adjusted by longer exposure times. (b) Line profiles over two feature boundaries within a tomographically reconstructed slice of a murine soleus muscle for different source-to-sample and sample-to-detector distances (positions RILab, RIILab and RIIILab in Table 1) assessed by PPCI for adjusted and non-adjusted exposure times.
Fig. 5
Fig. 5 Increase in image quality on a lab-based X-ray microscope due to Paganin phase retrieval. Tomographically reconstructed slice for image data (a) without and (b) with prior Paganin phase retrieval, respectively. (c) & (d) Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for tomographic data with (solid black) and without (shaded red) prior phase retrieval step. Phase retrieval improved the tomographic image quality by more than an order of magnitude. (a-d) Data shown is from a murine soleus muscle assessed by PPCI.
Fig. 6
Fig. 6 Image quality after phase retrieval using δ/μ ratios as described in Table 3 at a synchrotron source for different (effective) propagation distances. (a) Signal-to-noise ratio or SNR (black solid line) and contrast-to-noise ratio or CNR (blue dashed line). (b) Line profiles over two feature boundaries within tomographic PPCI data (positions RISyn, RIISyn, RIIISyn and RIVSyn in Table 1). Data acquired at TOMCAT beamline of the Swiss Light Source. SNR and CNR were generally high, but decreasing with larger (effective) propagation distances. Feature boundaries were pronounced to a higher extent for increasing (effective) propagation distances.
Fig. 7
Fig. 7 Comparison of lab-based and synchrotron-based tomographic PPCI of mouse soleus muscle. For the lab-based X-ray microscope tomographic data is shown for three different effective propagation distances (and adjusted exposure times) at position RILab (exposure time = 5 sec, Zeff = 8.57 mm), RIILab (exposure time = 20 sec, Zeff = 17.14 mm) and RIIILab (exposure time = 82 sec, Zeff = 34.29 mm). Synchrotron-based data has been retrieved for position RIVSyn (exposure time = 0.18 sec, R2 = 60 mm or Zeff = 59.86 mm). * mark nerve fibres.
Fig. 8
Fig. 8 Line profiles over the projected thickness of the phantom. The red dashed line represents the measured thickness of the phantom (H2F4 sheet). The projected thickness was computed via Eq. (5) at RILab (effective propagation distance of 8.57 mm). The best match of projected and measured thickness was found for 12.2 keV.
Fig. 9
Fig. 9 Line profiles computed over two edges for the lab-based system at all three effective propagation distances (with adjusted exposure times) and for three different δ/μ-ratios. An increase in the selected δ/μ-ratio resulted in a strong smoothing of the edge and the δ/μ-ratio of 1.35E-6 was determined best for all three effective propagation distances.
Fig. 10
Fig. 10 Signal-to-noise ratio and contrast-to-noise ratio for the lab-based system at the three different effective propagation distances (with adjusted exposure time) and for different δ/μ-ratios. Generally, both SNR and CNR increased for larger δ/μ-ratios, yet a plateau was reached beyond a certain point.
Fig. 11
Fig. 11 Line profiles computed over two edges for the synchrotron case at the smallest and largest effective propagation distance (RISyn and RIVSyn, respectively) and for three different δ/μ-ratios. An increase in the δ/μ-ratio resulted in a smoothing of the edges. The ratio of 9.25E-7 was determined best for all effective propagation distances.
Fig. 12
Fig. 12 Signal-to-noise ratio and contrast-to-noise ratio for the synchrotron case at the smallest and largest effective propagation distance (RISyn and RIVSyn, respectively). The SNR for RISyn stayed significantly above that for RIVSyn, whilst the CNR increased strongly for the lower effective propagation distance and increasing δ/μ-ratio, and to a lesser extent for the larger effective propagation distance.

Tables (3)

Tables Icon

Table 1 Summary of propagation distances and exposure times for PPCI

Tables Icon

Table 2 Summary of δ/μ ratios tested for phase retrieval for RIIILab

Tables Icon

Table 3 Optimal δ/μ ratios for different experimental settings

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z eff = R 1 R 2 R 1 + R 2 .
φ= 2πδ λ t
SNR= S sample σ background
CNR= S sample S background 0.5( σ sample 2 + σ background 2 ) .
t(x,y)= 1 μ ln( F 1 { F{I/ I 0 (x,y)} 1+ δ μ Z eff ( u 2 + v 2 ) } ),

Metrics