Abstract

We report control possibilities over ultrafast laser-induced periodic void lines in porous glass. Instead of high intensity regime leading to filaments, multi-pulse irradiation with high repetition rate (500 kHz) and various writing speed is used here in a transverse geometry. The formation of a perfectly controlled periodic void structure is shown to rely on such parameters as laser energy per pulse and scanning speed. In particular, both the threshold energy required for this effect and the period of the fabricated void arrays are shown to rise linearly with the number of the applied laser pulses per spot, or with a decreasing writing speed. To explain these results, a thermodynamic analysis is performed. The obtained dependencies are correlated with linear energy losses, whereas the periodicity of the observed structures is attributed to a static energy source formation at the void location affecting both material density and laser energy absorption.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses

Wataru Watanabe, Tadamasa Toma, Kazuhiro Yamada, Junji Nishii, Ken-ichi Hayashi, and Kazuyoshi Itoh
Opt. Lett. 25(22) 1669-1671 (2000)

Femtosecond laser-induced refractive index modifications in fluoride glass

Jean-Philippe Bérubé, Martin Bernier, and Réal Vallée
Opt. Mater. Express 3(5) 598-611 (2013)

Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel

Ausra Cerkauskaite, Rokas Drevinskas, Alexey O. Rybaltovskii, and Peter G. Kazansky
Opt. Express 25(7) 8011-8021 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
    [Crossref]
  3. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
    [Crossref] [PubMed]
  4. C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
    [Crossref]
  5. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
    [Crossref] [PubMed]
  6. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
    [Crossref]
  7. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  8. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
    [Crossref] [PubMed]
  9. N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
    [Crossref]
  10. N. Bloembergen, “A brief history of light breakdown,” J. Nonlinear Opt. Phys. Mater. 6(04), 377–385 (1997).
    [Crossref]
  11. A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
    [Crossref] [PubMed]
  12. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [Crossref]
  13. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [Crossref] [PubMed]
  14. V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
    [Crossref]
  15. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
    [Crossref]
  16. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [Crossref] [PubMed]
  17. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  18. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
    [Crossref]
  19. L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
    [Crossref]
  20. C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).
  21. L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
    [Crossref] [PubMed]
  22. A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
    [Crossref]
  23. A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
    [Crossref] [PubMed]
  24. V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
    [Crossref]
  25. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [Crossref] [PubMed]
  26. H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
    [Crossref]
  27. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
    [Crossref]
  28. X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
    [Crossref]
  29. Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
    [Crossref]
  30. K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
    [Crossref] [PubMed]
  31. S. Matsuo and S. Hashimoto, “Spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond laser processing,” Opt. Express 23(1), 165–171 (2015).
    [Crossref] [PubMed]
  32. A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
    [Crossref]
  33. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP 20(4), 1018–1026 (1965).
  34. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
    [Crossref]
  35. J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
    [Crossref]
  36. D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36(3), 353–384 (1988).
    [Crossref]
  37. V. M. Sura and P. C. Panda, “Viscosity of porous glasses,” J. Am. Ceram. Soc. 73(9), 2697–2701 (1990).
    [Crossref]
  38. A. R. Boccaccini, “Viscosity of porous glasses,” J. Mater. Sci. 30(22), 5663–5666 (1995).
    [Crossref]

2017 (1)

2016 (3)

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

2015 (2)

S. Matsuo and S. Hashimoto, “Spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond laser processing,” Opt. Express 23(1), 165–171 (2015).
[Crossref] [PubMed]

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

2014 (3)

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
[Crossref]

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

2013 (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

2012 (1)

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

2011 (3)

2008 (4)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

2007 (3)

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

2006 (3)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

2005 (2)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[Crossref]

2004 (1)

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

2001 (2)

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
[Crossref]

2000 (2)

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
[Crossref]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

1997 (1)

N. Bloembergen, “A brief history of light breakdown,” J. Nonlinear Opt. Phys. Mater. 6(04), 377–385 (1997).
[Crossref]

1995 (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

A. R. Boccaccini, “Viscosity of porous glasses,” J. Mater. Sci. 30(22), 5663–5666 (1995).
[Crossref]

1990 (1)

V. M. Sura and P. C. Panda, “Viscosity of porous glasses,” J. Am. Ceram. Soc. 73(9), 2697–2701 (1990).
[Crossref]

1988 (1)

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36(3), 353–384 (1988).
[Crossref]

1965 (1)

L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP 20(4), 1018–1026 (1965).

Ahsan, Md. S.

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

Anfimova, I. N.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Antropova, T. V.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Bellouard, Y.

Bian, H.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Bloembergen, N.

N. Bloembergen, “A brief history of light breakdown,” J. Nonlinear Opt. Phys. Mater. 6(04), 377–385 (1997).
[Crossref]

Boccaccini, A. R.

A. R. Boccaccini, “Viscosity of porous glasses,” J. Mater. Sci. 30(22), 5663–5666 (1995).
[Crossref]

Bourgeade, A.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Breil, J.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Brodeur, A.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
[Crossref]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]

Brueckner, H. J.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Bulgakova, N.

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Burmeister, F.

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Cerkauskaite, A.

Chen, F.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Cheng, Y.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Chichkov, B. N.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Chimier, B.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Chowdhury, I. H.

A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[Crossref]

Colombier, J.-P.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Courvoisier, F.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Cvecek, K.

Dai, Y.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Danilov, P. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Dennis, W. M.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Döring, S.

Drevinskas, R.

Dubov, M.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Dudley, J. M.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Furfaro, L.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Garcia, J. F.

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Giust, R.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Grady, D. E.

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36(3), 353–384 (1988).
[Crossref]

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Gulley, J. R.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Hallo, L.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Hashimoto, S.

Hayashi, K.

Hébert, D.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Hirao, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Hongler, M.-O.

Hou, X.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Hu, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Hunt, A. J.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Ionin, A. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Itoh, K.

Jacquot, M.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Jia, T.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Joglekar, A. P.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Juodkazis, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Kazansky, P. G.

Keldysh, L. V.

L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP 20(4), 1018–1026 (1965).

Kudryashov, S. I.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Kwon, Y.-Y.

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

Lacourt, P. A.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Lee, M. S.

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

Li, C.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Liebig, C. M.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Liu, H.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Liu, H.-H.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Matsuo, S.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
[Crossref]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[Crossref]

Meshcheryakov, Y. P.

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Meyer, R.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Meyhöfer, E.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Mezel, C.

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Mézel, C.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Miyamoto, I.

Mourou, G.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

Nishii, J.

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Nkonga, B.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Noh, Y.-C.

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

Nolte, S.

Panda, P. C.

V. M. Sura and P. C. Panda, “Viscosity of porous glasses,” J. Am. Ceram. Soc. 73(9), 2697–2701 (1990).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Qiu, J.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Rapp, L.

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Razvan,

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

Richter, S.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

Rudenko, A.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Rybaltovskii, A. O.

Schaffer, C.

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
[Crossref]

Schaffer, C. B.

Schmidt, M.

Schurtz, G.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Sergeev, M. M.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Shakhno, E. A.

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

Si, J.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Sohn, I.-B.

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

Song, J.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Sonina, S. V.

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Stoian, R.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

Sun, H.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Sura, V. M.

V. M. Sura and P. C. Panda, “Viscosity of porous glasses,” J. Am. Ceram. Soc. 73(9), 2697–2701 (1990).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Tikhonchuk, V. T.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Toma, T.

Travaillé, G.

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

Tünnermann, A.

Veiko, V. P.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
[Crossref]

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

Wang, X.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Watanabe, W.

Winkler, S. W.

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Wu, A.

A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[Crossref]

Xu, J.

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Xu, X.

A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[Crossref]

Xu, Z.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

Yakovlev, E. B.

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
[Crossref]

Yamada, K.

Yang, Q.

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Zakoldaev, R. A.

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Zhukov, V. P.

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

Zimmermann, F.

Appl. Phys. A (2)

H. Sun, J. Song, C. Li, J. Xu, X. Wang, Y. Cheng, Z. Xu, J. Qiu, and T. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys. A 88(2), 285–288 (2007).
[Crossref]

X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A 102(1), 39–44 (2011).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B: Lasers Opt. 87(1), 21–27 (2007).
[Crossref]

Appl. Phys. Lett. (1)

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

V. M. Sura and P. C. Panda, “Viscosity of porous glasses,” J. Am. Ceram. Soc. 73(9), 2697–2701 (1990).
[Crossref]

J. Appl. Phys. (1)

N. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?” J. Appl. Phys. 118(23), 233108 (2015).
[Crossref]

J. Laser Micro/Nanoeng. (1)

Md. S. Ahsan, Y.-Y. Kwon, I.-B. Sohn, Y.-C. Noh, and M. S. Lee, “Formation of periodic micro/nano-holes array in boro-aluminosilicate glass by single-pulse femtosecond laser machining,” J. Laser Micro/Nanoeng. 9(1), 19 (2014).
[Crossref]

J. Mater. Sci. (1)

A. R. Boccaccini, “Viscosity of porous glasses,” J. Mater. Sci. 30(22), 5663–5666 (1995).
[Crossref]

J. Mech. Phys. Solids (1)

D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids 36(3), 353–384 (1988).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

N. Bloembergen, “A brief history of light breakdown,” J. Nonlinear Opt. Phys. Mater. 6(04), 377–385 (1997).
[Crossref]

Laser Photonics Rev. (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Laser Phys. Lett. (1)

V. P. Veiko, S. I. Kudryashov, M. M. Sergeev, R. A. Zakoldaev, P. A. Danilov, A. A. Ionin, T. V. Antropova, and I. N. Anfimova, “Femtosecond laser-induced stress-free ultra-densification inside porous glass,” Laser Phys. Lett. 13(5), 055901 (2016).
[Crossref]

Meas. Sci. Technol. (1)

C. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784 (2001).
[Crossref]

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (1)

J. R. Gulley, S. W. Winkler, W. M. Dennis, C. M. Liebig, R. Stoian, and Razvan, “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85(1), 013808 (2012).
[Crossref]

Phys. Rev. B (7)

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437 (2000).
[Crossref]

A. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73(21), 214101 (2006).
[Crossref]

L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

C. Mézel, L. Hallo, A. Bourgeade, D. Hébert, V. T. Tikhonchuk, B. Chimier, B. Nkonga, G. Schurtz, and G. Travaillé, “Formation of nanocavities in dielectrics: A self-consistent modeling,” Phys. Rev. B 15(9), 093504 (2008).

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

Phys. Rev. Lett. (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248 (1995).
[Crossref] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

PNAS (1)

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” PNAS 101(16), 5856–5861 (2004).
[Crossref] [PubMed]

Quantum Electron. (1)

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322 (2014).
[Crossref]

Sci. Rep. (1)

L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley, and F. Courvoisier, “High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams,” Sci. Rep. 6, 34286 (2016).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP 20(4), 1018–1026 (1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of transverse laser scanning geometry (a) and the final structure (b).
Fig. 2
Fig. 2 Illustration of the experimental setup, where tightly focused (20×, NA = 0.4) ultra-short laser pulses (200 fs, 500kHz, 515nm) create decompaction region inside of the porous glass.
Fig. 3
Fig. 3 (a–c) Optical transmission microscopy of decompaction regions obtained for different writing speeds; (d) image of periodic lines of voids formed inside of the porous glass at a constant pulse energy (Ep = 2.2μJ) and with different number of pulses per focusing spot: (1) 2600, (2) 3200, (3) 5330, (4) 32000 and (5) 80000.
Fig. 4
Fig. 4 (a) The period of the decompaction regions as a function of the number of laser pulses per spot at a constant pulse energy (Ep = 2.2μJ); (b) the total threshold energy required to obtain the decompaction of PG using mentioned experimental setup as a function of the number of pulses per focusing spot.
Fig. 5
Fig. 5 (a) XZ view of base temperature distribution (Ep = 2.2μJ, Vs = 1mm/s, ν = 500kHz, ω0 = 2.45μm) after 10,000 pulses irradiated on the porous glass; (b) temporal profiles of base temperature increase in positions of (1,0,0)μm and (10,0,0)μm at various laser scanning speed; (c) 1D temperature increase along X axis at various scanning speed after 10,000 pulses illuminated on the material, as one can see, at speed lower than 10 mm/s the heat front propagates faster than the laser scan; Note, in this calculation, the coordinate is moving at speed of Vs; for simplicity, heat parameters are set as constants with cg = 1.6J/g/K, ρg = 2.2g/cm3 and α = 2.7 × 10−7m2/s.
Fig. 6
Fig. 6 Schematics illustrating the void structure formation

Tables (1)

Tables Icon

Table 1 Parameters summary used in simulation

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

j z φ = 1 2 k τ 2 φ + υ g 2 2 φ t 2 k Δ n φ
Δ n = j W PI U g n ε 0 c 0 | φ | 2 k + n 2 ε 0 c 0 | φ | 2 2 + j σ B ρ 2 k σ B ω τ s ρ 2 k
d p / d t = ( W PI + η I ρ ) ( 1 ρ / ρ m ) ρ / τ p
q ( z ) = π ω 0 2 [ 1 + ( λ z π ω 0 2 n 0 ) 2 ] t 4 π imag ( n ) λ I ( z , t ) d t
Δ T ( x , y , z , t ) = 1 π ρ g c g i = 0 N 1 π α ( t i / ν ) Q i
Q i = q ( z ) ω z 2 + 8 α ( t i / ν ) exp [ 2 { [ x + V s ( t i / ν ) ] 2 + y 2 } ω z 2 + 8 α ( t i / ν ) ( z z ) 2 4 α t ] d z
Λ ( N ) = ξ N = ξ N 0 + ξ ( N N 0 ) = d ν + ξ N 1
E a ( N ) = E 0 N = E 0 N 0 + E 0 ( N N 0 ) = E ν + E 0 N 1

Metrics