Abstract

Porous GaN and (Ga,In)N/GaN single quantum well layers are fabricated using a selective area sublimation (SAS) technique from initially smooth and compact 2-dimensional (D) layers grown on Si(111) or c-plane sapphire substrates. The photoluminescence properties of these porous layers are measured and compared to reference non-porous samples. Whatever the substrate used, the porosity leads to an increase of the room temperature photoluminescence intensity. The magnitude of this increase is related to the initial defect density of the 2D epitaxial layers and to the degree of carrier localization prior to the SAS process.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Carrier dynamics of InxGa1-xN/GaN multiple quantum wells grown on (−201) β-Ga2O3 for bright vertical light emitting diodes

Mufasila Mumthaz Muhammed, Jian Xu, Nimer Wehbe, and Iman Salem Roqan
Opt. Express 26(12) 14869-14878 (2018)

Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates

Shao-Ying Ting, Yu-Feng Yao, Wei-Lun Chung, Wen-Ming Chang, Chih-Yen Chen, Hao-Tsung Chen, Che-Hao Liao, Horng-Shyang Chen, Chieh Hsieh, and C. C. Yang
Opt. Express 20(20) 21860-21874 (2012)

Properties of near-field photoluminescence in green emitting single and multiple semipolar (2021) plane InGaN/GaN quantum wells

Mounir D. Mensi, Daniel L. Becerra, Ruslan Ivanov, Saulius Marcinkevičius, Shuji Nakamura, Steven P. DenBaars, and James S. Speck
Opt. Mater. Express 6(1) 39-45 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
    [Crossref]
  2. J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
    [Crossref]
  3. J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
    [Crossref]
  4. L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
    [Crossref] [PubMed]
  5. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
    [Crossref] [PubMed]
  6. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
    [Crossref]
  7. O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
    [Crossref] [PubMed]
  8. C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
    [Crossref]
  9. G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
    [Crossref]
  10. H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
    [Crossref]
  11. K. J. Lee, S.-J. Kim, J.-J. Kim, K. Hwang, S.-T. Kim, and S.-J. Park, “Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers,” Opt. Express 22(S4), A1164–A1173 (2014).
    [Crossref] [PubMed]
  12. B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
    [Crossref] [PubMed]
  13. B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
    [Crossref]
  14. M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
    [Crossref]
  15. T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
    [Crossref] [PubMed]
  16. B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
    [Crossref] [PubMed]
  17. M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
    [Crossref]
  18. J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
    [Crossref] [PubMed]
  19. M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
    [Crossref]
  20. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
    [Crossref]
  21. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
    [Crossref]
  22. M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
    [Crossref]
  23. C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
    [Crossref]
  24. Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
    [Crossref]
  25. B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
    [Crossref]
  26. B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
    [Crossref]
  27. M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
    [Crossref]
  28. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
    [Crossref]
  29. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
    [Crossref]
  30. J. Seo Im, V. Härle, F. Scholz, and A. Hangleiter, “Radiative Lifetime of Excitons in GaInN/GaN Quantum Wells,” MRS Internet J. Nitride Semicond. Res. 1, e37 (1996).
    [Crossref]

2017 (2)

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

2016 (5)

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

2015 (1)

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

2014 (4)

K. J. Lee, S.-J. Kim, J.-J. Kim, K. Hwang, S.-T. Kim, and S.-J. Park, “Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers,” Opt. Express 22(S4), A1164–A1173 (2014).
[Crossref] [PubMed]

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
[Crossref]

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

2013 (4)

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

2011 (1)

A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
[Crossref]

2007 (1)

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

2001 (2)

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

2000 (1)

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

1999 (1)

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

1998 (2)

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

1997 (3)

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

1996 (1)

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

1995 (1)

B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
[Crossref] [PubMed]

Aguiló, M.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Akasaki, I.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Albrecht, M.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Alloing, B.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

Amano, H.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Ansah-Antwi, K. K.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Aulombard, R.-L.

B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
[Crossref] [PubMed]

Azuhata, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Bai, J.

J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
[Crossref]

Beaumont, B.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Benton, J.

J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
[Crossref]

Beraudo, E.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Bigenwald, P.

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

Bilousov, O. V.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Brändli, V.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

Brandt, O.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Brault, J.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

Briot, O.

B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
[Crossref] [PubMed]

Cao, H.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Carvajal, J. J.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Chen, D.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Chichibu, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Cho, Y.-H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Chow, S. Y.

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

Chua, S. J.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

Corfdir, P.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Courville, A.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Dai, Y.

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Damilano, B.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

DenBaars, S. P.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Deng, H.

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Díaz, F.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Drechsel, P.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Fan, Y.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Feltin, E.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

Fernández-Garrido, S.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Fischer, A. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Fitzgerald, E. A.

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

Flissikowski, T.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Frayssinet, E.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Gainer, G. H.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Geaney, H.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Geelhaar, L.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Gibart, P.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Gil, B.

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
[Crossref] [PubMed]

Grahn, H. T.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Grandjean, N.

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Grillo, V.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Haffouz, S.

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Han, J.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Hao, X.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Hartono, H.

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

Hassan, Z.

A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
[Crossref]

Hauswald, C.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Hu, H.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Huang, S.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Huo, Q.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Hwang, K.

Iwaya, M.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Jahn, U.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Jiang, H.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Jiménez, J.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Kamiyama, S.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Katsuragawa, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Keller, S.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Khoury, M.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Kim, J.-J.

Kim, S.-J.

Kim, S.-T.

Komori, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Ku, P.-C.

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Kuo, H.-C.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Lahrèche, H.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

Laügt, M.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

Lee, K. J.

Lefebvre, P.

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

Leroux, M.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Leung, B.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Li, Y.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Lin, C.-F.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Lin, D.-W.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Liu, S.

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

Lorenzini, P.

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Luna, E.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Lymperakis, L.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Markurt, T.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Martínez, O.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Massies, J.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Mishra, U. K.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Nakamura, R.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Nakamura, S.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Neugebauer, J.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

O’Dwyer, C.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Omar, K.

A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
[Crossref]

Parbrook, P. J.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

Park, S. H.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Park, S.-J.

Portail, M.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

Poulet, B.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Ramizy, A.

A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
[Crossref]

Rashid, M. J.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Remmele, T.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Ronning, C.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Rotunno, E.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Sano, T.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Schmidt, E.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Schnell, N.

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

Schulz, T.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Seetoh, I. P.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Semond, F.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

Shao, Y.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Shen, J.

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

Soh, C. B.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

Song, J. J.

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Sota, S.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Sota, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Stauss, P.

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Sun, C.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Sun, Q.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Takanami, S.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Takeuchi, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Takeuchi, T.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Tan, R. J. N.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Tay, C. B.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Teisseire, M.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Teng, C.-H.

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Terao, S.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Tian, Y.

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Tottereau, O.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Trampert, A.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Ukai, T.

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Vajpeyi, A. P.

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Vennéguès, P.

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Vézian, S.

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

Wang, G.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Wang, J.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Wang, S.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Wang, T.

J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
[Crossref]

Wei, R.

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Wu, Y.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Xiong, K.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Xiong, W.

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Xiu, Z.

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

Xu, K.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Yu, J.

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

Yuan, G.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Zettler, J. K.

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

Zhang, B.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Zhang, C.

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

Zhang, H.

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Zhang, L.

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

Zhang, Y.

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

Zubialevich, V. Z.

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films,” ACS Appl. Mater. Interfaces 5(21), 11074–11079 (2013).
[Crossref] [PubMed]

O. V. Bilousov, J. J. Carvajal, H. Geaney, V. Z. Zubialevich, P. J. Parbrook, O. Martínez, J. Jiménez, F. Díaz, M. Aguiló, and C. O’Dwyer, “Fully Porous GaN p-n Junction Diodes Fabricated by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces 6(20), 17954–17964 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, C.-F. Lin, H. Cao, and J. Han, “Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example,” ACS Photonics 2(7), 980–986 (2015).
[Crossref]

G. Yuan, K. Xiong, C. Zhang, Y. Li, and J. Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics 3(9), 1604–1610 (2016).
[Crossref]

Appl. Phys. Lett. (6)

H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, “Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template,” Appl. Phys. Lett. 90(17), 171917 (2007).
[Crossref]

J. Benton, J. Bai, and T. Wang, “Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting,” Appl. Phys. Lett. 105(22), 223902 (2014).
[Crossref]

C.-H. Teng, L. Zhang, H. Deng, and P.-C. Ku, “Strain-induced red-green-blue wavelength tuning in InGaN quantum wells,” Appl. Phys. Lett. 108(7), 071104 (2016).
[Crossref]

B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett. 75(7), 962–964 (1999).
[Crossref]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[Crossref]

Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998).
[Crossref]

Appl. Surf. Sci. (1)

B. Damilano, N. Grandjean, J. Massies, and F. Semond, “GaN and GaInN quantum dots: an efficient way to get luminescence in the visible spectrum range,” Appl. Surf. Sci. 164(1-4), 241–245 (2000).
[Crossref]

CrystEngComm (2)

Y. Tian, L. Zhang, Y. Wu, Y. Shao, Y. Dai, H. Zhang, R. Wei, and X. Hao, “Characterization of dislocations in MOCVD-grown GaN using a high temperature annealing method,” CrystEngComm 16(11), 2317 (2014).
[Crossref]

J. Yu, L. Zhang, J. Shen, Z. Xiu, and S. Liu, “Wafer-scale porous GaN single crystal substrates and their application in energy storage,” CrystEngComm 18(27), 5149–5154 (2016).
[Crossref]

J. Cryst. Growth (1)

B. Damilano, S. Vézian, M. Portail, B. Alloing, J. Brault, A. Courville, V. Brändli, M. Leroux, and J. Massies, “Optical properties of InxGa1−xN/GaN quantum-disks obtained by selective area sublimation,” J. Cryst. Growth 477, 262–266 (2017).
[Crossref]

J. Phys. Appl. Phys. (1)

C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. Appl. Phys. 46(36), 365102 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(2), L382–L385 (1997).
[Crossref]

Mater. Sci. Eng. B (1)

M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennéguès, J. Massies, and P. Gibart, “Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire,” Mater. Sci. Eng. B 50(1-3), 97–104 (1997).
[Crossref]

Mater. Sci. Forum (1)

M. Leroux, H. Lahrèche, F. Semond, M. Laügt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, and J. Massies, “From Relaxed to Highly Tensily Strained GaN Grown on 6H-SiC and Si(111): Optical Characterization,” Mater. Sci. Forum 353–356, 795–798 (2001).
[Crossref]

Nano Lett. (2)

J. K. Zettler, P. Corfdir, C. Hauswald, E. Luna, U. Jahn, T. Flissikowski, E. Schmidt, C. Ronning, A. Trampert, L. Geelhaar, H. T. Grahn, O. Brandt, and S. Fernández-Garrido, “Observation of Dielectrically Confined Excitons in Ultrathin GaN Nanowires up to Room Temperature,” Nano Lett. 16(2), 973–980 (2016).
[Crossref] [PubMed]

B. Damilano, S. Vézian, J. Brault, B. Alloing, and J. Massies, “Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication,” Nano Lett. 16(3), 1863–1868 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B 58(20), R13371 (1998).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. Gil, O. Briot, and R.-L. Aulombard, “Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry,” Phys. Rev. B Condens. Matter 52(24), 17028–17031 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. Markurt, L. Lymperakis, J. Neugebauer, P. Drechsel, P. Stauss, T. Schulz, T. Remmele, V. Grillo, E. Rotunno, and M. Albrecht, “Blocking Growth by an Electrically Active Subsurface Layer: The Effect of Si as an Antisurfactant in the Growth of GaN,” Phys. Rev. Lett. 110(3), 036103 (2013).
[Crossref] [PubMed]

Phys. Status Solidi, A Appl. Res. (1)

M. Iwaya, S. Terao, T. Sano, S. Takanami, T. Ukai, R. Nakamura, S. Kamiyama, H. Amano, and I. Akasaki, “High-Efficiency GaN/AlxGa1-xN Multi-Quantum-Well Light Emitter Grown on Low-Dislocation Density GaN/AlxGa1-xN,” Phys. Status Solidi, A Appl. Res. 188(1), 117–120 (2001).
[Crossref]

Sci. Rep. (1)

L. Zhang, S. Wang, Y. Shao, Y. Wu, C. Sun, Q. Huo, B. Zhang, H. Hu, and X. Hao, “One-step fabrication of porous GaN crystal membrane and its application in energy storage,” Sci. Rep. 7, 44063 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Khoury, A. Courville, B. Poulet, M. Teisseire, E. Beraudo, M. J. Rashid, E. Frayssinet, B. Damilano, F. Semond, O. Tottereau, and P. Vennéguès, “Imaging and counting threading dislocations in c-oriented epitaxial GaN layers,” Semicond. Sci. Technol. 28(3), 035006 (2013).
[Crossref]

Sens. Actuators B Chem. (1)

A. Ramizy, Z. Hassan, and K. Omar, “Porous GaN on Si(111) and its application to hydrogen gas sensor,” Sens. Actuators B Chem. 155(2), 699–708 (2011).
[Crossref]

Other (1)

J. Seo Im, V. Härle, F. Scholz, and A. Hangleiter, “Radiative Lifetime of Excitons in GaInN/GaN Quantum Wells,” MRS Internet J. Nitride Semicond. Res. 1, e37 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Structure of the samples.
Fig. 2
Fig. 2 Scanning electron microscopy in plane-views of samples p-A (a), p-B (b), and p-C (c). Cross-section image of sample p-B (d).
Fig. 3
Fig. 3 Room temperature photoluminescence spectra of samples A, p-A, B and p-B.
Fig. 4
Fig. 4 (a) Room temperature photoluminescence of samples C and p-C. (b) Comparison of the room temperature photoluminescence of sample p-A and p-C (log. scale).
Fig. 5
Fig. 5 (a) Temperature dependence of the photoluminescence spectra of sample p-B. (b) Arrhenius plot of the integrated photoluminescence intensity of the (Ga,In)N quantum well of sample p-B. A non-radiative process corresponding to an activation energy of 46 meV is found.

Metrics