Abstract

We describe a system for automated modelocking and optimization of a fiber laser oscillator employing nonlinear polarization evolution. Using four liquid crystal variable retarders, we fully control the fiber launch and output polarization states, enabling compensation for mechanical and environmental perturbations to the fiber cavity. We demonstrate mapping of the modelocking regions for an ANDi fiber oscillator and demonstrate that local and global optimization algorithms can be used to maintain the laser in the same operating state. This technique enables robust operation of nonlinear polarization evolution modelocked fiber lasers, rivaling the stability of PM fiber lasers while maintaining the advantages of the NPE modelocking mechanism.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast PM fiber ring laser mode-locked by nonlinear polarization evolution with short NPE section segments

Wenchao Zhang, Yang Liu, Chao Wang, Zhiwei Zhu, Daping Luo, Chenlin Gu, and Wenxue Li
Opt. Express 26(7) 7934-7941 (2018)

Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution

Zhiyu Yan, Xiaohui Li, Yulong Tang, Perry Ping Shum, Xia Yu, Ying Zhang, and Qi Jie Wang
Opt. Express 23(4) 4369-4376 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
    [Crossref]
  2. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
    [Crossref]
  3. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
    [Crossref]
  4. S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-Seeking Control of a Mode-Locked Laser,” IEEE J. Quantum Electron. 49(10), 852–861 (2013).
    [Crossref]
  5. M. Olivier, M.-D. Gagnon, and M. Piché, “Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state,” Opt. Express 23(5), 6738–6746 (2015).
    [Crossref] [PubMed]
  6. R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6(1), 37616 (2016).
    [Crossref] [PubMed]
  7. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37(16), 3426–3428 (2012).
    [Crossref] [PubMed]
  8. U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33(5), 825 (2016).
    [Crossref]
  9. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-Term Meassurement of PMD and Polarisation Drift in Installed Fibers,” J. Lightwave Technol. 18(7), 941–951 (2000).
    [Crossref]
  10. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
    [Crossref] [PubMed]
  11. Z. Zhuang, S. W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24(10), 694–696 (1999).
    [Crossref] [PubMed]
  12. M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
    [Crossref]
  13. U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2(4), 275–278 (2015).
    [Crossref]
  14. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  15. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [Crossref] [PubMed]
  16. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
    [Crossref]
  17. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  18. J. L. Devore, Probability and Statistics for Engineering and the Sciences (Brooks/Cole, 2012).
  19. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
    [Crossref] [PubMed]
  20. G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90(1), 161–175 (1990).
    [Crossref]
  21. P. Charbonneau, “An Introduction to Genetic Algorithms for Numerical Optimization,” NCAR Technical Note TN-450 + IA (2002).

2016 (2)

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6(1), 37616 (2016).
[Crossref] [PubMed]

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33(5), 825 (2016).
[Crossref]

2015 (2)

2014 (2)

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
[Crossref]

2013 (2)

2012 (1)

2008 (3)

2006 (1)

2000 (1)

1999 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

1992 (1)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

1990 (1)

G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90(1), 161–175 (1990).
[Crossref]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Abramski, K.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Amrani, F.

Andral, U.

Andrekson, P. A.

Bale, B. G.

Billard, F.

Brentel, J.

Brunton, S. L.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-Seeking Control of a Mode-Locked Laser,” IEEE J. Quantum Electron. 49(10), 852–861 (2013).
[Crossref]

Buckley, J.

Buguet, J.

Chong, A.

Dudzik, G.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Dueck, G.

G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90(1), 161–175 (1990).
[Crossref]

Fermann, M. E.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Fodil, R. S.

Fu, X.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-Seeking Control of a Mode-Locked Laser,” IEEE J. Quantum Electron. 49(10), 852–861 (2013).
[Crossref]

Gagnon, M.-D.

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Grelu, P.

Haberl, F.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Hertz, E.

Hofer, M.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Ivanenko, A.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Karlsson, M.

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6(1), 37616 (2016).
[Crossref] [PubMed]

Khripunov, S.

Kieu, K.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Kobtsev, S.

Komorowska, K.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Krzempek, K.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Kukarin, S.

Kutz, J. N.

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-Seeking Control of a Mode-Locked Laser,” IEEE J. Quantum Electron. 49(10), 852–861 (2013).
[Crossref]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[Crossref]

Li, W.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Nikodem, M.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Ober, M. H.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

Olivier, M.

Patel, J. S.

Piché, M.

Radnatarov, D.

Renninger, W.

Renninger, W. H.

Scheuer, T.

G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90(1), 161–175 (1990).
[Crossref]

Shen, X.

Si Fodil, R.

Suh, S. W.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Waz, A.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Wise, F.

Wise, F. W.

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6(1), 37616 (2016).
[Crossref] [PubMed]

Yan, M.

Zeng, H.

Zhuang, Z.

Zygadlo, K.

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Appl. Phys. B Lasers Opt. (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B Lasers Opt. 65(2), 277–294 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, “Characterization of ultrashort pulse formation in passively mode-locked fiber lasers,” IEEE J. Quantum Electron. 28(3), 720–728 (1992).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-Seeking Control of a Mode-Locked Laser,” IEEE J. Quantum Electron. 49(10), 852–861 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-Tuning Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101408 (2014).
[Crossref]

J. Comput. Phys. (1)

G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys. 90(1), 161–175 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Opto-Electron. Rev. (1)

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, and K. Komorowska, “Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electron. Rev. 22(2), 113–117 (2014).
[Crossref]

Sci. Rep. (1)

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6(1), 37616 (2016).
[Crossref] [PubMed]

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983).
[Crossref] [PubMed]

Other (2)

J. L. Devore, Probability and Statistics for Engineering and the Sciences (Brooks/Cole, 2012).

P. Charbonneau, “An Introduction to Genetic Algorithms for Numerical Optimization,” NCAR Technical Note TN-450 + IA (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of an ANDi laser (a) with and (b) without liquid crystals. The LCs give the ability to fully address all possible polarization states, meaning the laser can be kept in the same state even when the system is greatly perturbed. PBS: Polarizing beam splitter; SMF: Single mode fiber
Fig. 2
Fig. 2 Diagram of the two configurations of the LC stack showing the (a) forward and (b) backward propagation directions. The simulated output polarizations are shown over the full range of the two LCs for a 45° linear input polarization. The size of the marker indicates the relative magnitude of the first LC, while the color indicates the magnitude of the second LC.
Fig. 3
Fig. 3 States found through a scan over all available voltages, showing spectra for several operating points. Three of the four control values are represented as spatial dimensions, with the fourth value represented by the color and diameter of the marker.
Fig. 4
Fig. 4 Spectrum found by GA targeting an idealized ANDi spectrum defined by a center wavelength of 1043 nm and width of (a) 25 nm and (b) 32 nm. The target spectrum and measured spectra are both normalized to their integrated count, and displayed in normalized units. Both spectra are compensated for the responsivity of the array detector.
Fig. 5
Fig. 5 Pulse duration as a function of environmental temperature in (a) a standard oscillator and (b) a LC stabilized oscillator (minimizing spectral error and power error). (c) Spectrum of the LC mode-locked ANDi laser (solid) recovered by GA from a random starting point using a target spectrum (dashed). (d) Measured FROG traces taken during the temperature cycling run, with the numbers i-iv corresponding to the time and temperatures indicated in (b). The spectral and temporal traces are inset in white along the appropriate axes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E out = J(λ/4) R(-45°) J( ρ 2 ) R(45°) J( ρ 1 ) E in
S 1 =cos( ρ 2 )cos(2α)+sin( ρ 2 )sin(2α)sin( ρ 1 δ) S 2 =sin( ρ 2 )cos(2α)cos( ρ 2 )sin(2α)sin( ρ 1 δ) . S 3 =cos( ρ 1 δ)sin(2α)

Metrics