Abstract

Existing polarization cameras are generally single or narrow band and sensitive only to linear polarization states. In this work, we demonstrate a novel full-Stokes camera operating in the red, green, and blue (RGB) spectrum. The camera consists of two 1600-by-1200 pixel focal plane arrays with linear micro-polarizers and Bayer filters, in a division-of-amplitude configuration. The design, assembly, calibration, and testing of the camera are presented. Multiple indoor and outdoor scenes are acquired to provide full Stokes polarization images in the three spectral bands. Our camera design has the unique advantage of measuring the intensity, color, and polarization states of an optical field in a single shot.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Xingzhou Tu, Oliver J. Spires, Xiaobo Tian, Neal Brock, Rongguang Liang, and Stanley Pau, "Division of amplitude RGB full-Stokes camera using micro-polarizer arrays: erratum," Opt. Express 26, 4192-4193 (2018)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-4-4192

OSA Recommended Articles
Eavesdropping of display devices by measurement of polarized reflected light

Yitian Ding, Ronan Kerviche, Amit Ashok, and Stanley Pau
Appl. Opt. 57(19) 5483-5491 (2018)

Review of passive imaging polarimetry for remote sensing applications

J. Scott Tyo, Dennis L. Goldstein, David B. Chenault, and Joseph A. Shaw
Appl. Opt. 45(22) 5453-5469 (2006)

Optimized design of N optical filters for color and polarization imaging

Xingzhou Tu and Stanley Pau
Opt. Express 24(3) 3011-3024 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  3. W. L. Hsu, S. Johnson, and S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
    [Crossref]
  4. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
    [Crossref] [PubMed]
  5. M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
    [Crossref]
  6. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express 3(11), 2866–2880 (2012).
    [Crossref] [PubMed]
  7. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
    [Crossref] [PubMed]
  8. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [Crossref] [PubMed]
  9. W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [Crossref] [PubMed]
  10. W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
    [Crossref] [PubMed]
  11. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref] [PubMed]
  12. M. Garcia, S. Gao, C. Edmiston, T. York, and V. Gruev, “A 1300 × 800, 700 mW, 30 fps spectral polarization imager,” in Circuits and Systems (ISCAS) 2015 IEEE International Symposium (IEEE 2015), 1106–1109.
    [Crossref]
  13. M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
    [Crossref]
  14. X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE 6822, 68221J (2008).
    [Crossref]
  15. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
    [Crossref] [PubMed]
  16. S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
    [Crossref] [PubMed]
  17. X. Tu and S. Pau, “Optimized design of N optical filters for color and polarization imaging,” Opt. Express 24(3), 3011–3024 (2016).
    [Crossref] [PubMed]
  18. W. T. Welford, Aberrations of Optical System (Bristol; Boston: Hilger, 1986).
  19. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
    [Crossref]
  20. R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 2010).
  21. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
    [Crossref]
  22. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17(11), 9112–9125 (2009).
    [Crossref] [PubMed]
  23. I. J. Vaughn, A. S. Alenin, and J. Scott Tyo, “Focal plane filter array engineering I: rectangular lattices,” Opt. Express 25(10), 11954–11968 (2017).
    [Crossref] [PubMed]
  24. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

2015 (1)

2014 (3)

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref] [PubMed]

2013 (2)

S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
[Crossref] [PubMed]

W. L. Hsu, S. Johnson, and S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2008 (2)

2006 (1)

2005 (1)

2000 (1)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

1986 (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Alenin, A. S.

Balakrishnan, K.

Bermak, A.

Boussaid, F.

Brock, N.

Chenault, D. B.

Chigrinov, V. G.

Chipman, R. A.

Craven-Jones, J.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Creath, K.

Cui, N.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

Davis, J.

Dereniak, E. L.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Descour, M. R.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Edmiston, C.

Elsner, A. E.

Engheta, N.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

Escuti, M.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Fineschi, S.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Gao, S.

Garcia, J. P.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Garcia, M.

Goldstein, D. L.

Goldstein, G.

Gruev, V.

Gunturk, B.

X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE 6822, 68221J (2008).
[Crossref]

Harrington, D.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Hayes, J.

Hsu, W. L.

Ibn-Elhaj, M.

Johnson, S.

W. L. Hsu, S. Johnson, and S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
[Crossref]

Kemme, S. A.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Kroto, S.

LaCasse, C.

LaCasse, C. F.

Li, X.

X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE 6822, 68221J (2008).
[Crossref]

Locke, A. M.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Marinov, R.

Martino, A. D.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Mawet, D.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Millerd, J.

Myhre, G.

North-Morris, M.

Novak, M.

Pau, S.

Peinado, A.

Phipps, G. S.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Ratliff, B. M.

Riedi, J.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Sabatke, D. S.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Scott Tyo, J.

Shaw, J. A.

Snik, F.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Sweatt, W. C.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Tu, X.

Twietmeyer, K. M.

Tyo, J. S.

Vail, A.

Van der Spiegel, J.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

VanNasdale, D.

Vaughn, I. J.

Wu, X.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

Wyant, J.

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Zhang, L.

X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE 6822, 68221J (2008).
[Crossref]

Zhang, M.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

Zhao, X.

Zhao, Y.

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Am. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: A demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

J. Mod. Opt. (1)

W. L. Hsu, S. Johnson, and S. Pau, “Multiplex localization imaging and sub-diffraction limited measurement,” J. Mod. Opt. 60(5), 414–421 (2013).
[Crossref]

Opt. Express (10)

G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[Crossref] [PubMed]

S. Gao and V. Gruev, “Gradient-based interpolation method for division-of-focal-plane polarimeters,” Opt. Express 21(1), 1137–1151 (2013).
[Crossref] [PubMed]

W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref] [PubMed]

W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
[Crossref] [PubMed]

X. Tu and S. Pau, “Optimized design of N optical filters for color and polarization imaging,” Opt. Express 24(3), 3011–3024 (2016).
[Crossref] [PubMed]

I. J. Vaughn, A. S. Alenin, and J. Scott Tyo, “Focal plane filter array engineering I: rectangular lattices,” Opt. Express 25(10), 11954–11968 (2017).
[Crossref] [PubMed]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[Crossref] [PubMed]

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17(11), 9112–9125 (2009).
[Crossref] [PubMed]

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref] [PubMed]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19(27), 26161–26173 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Proc. IEEE (1)

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation,” Proc. IEEE 102(10), 1435–1449 (2014).
[Crossref]

Proc. SPIE (3)

X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE 6822, 68221J (2008).
[Crossref]

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Other (3)

R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 2010).

W. T. Welford, Aberrations of Optical System (Bristol; Boston: Hilger, 1986).

M. Garcia, S. Gao, C. Edmiston, T. York, and V. Gruev, “A 1300 × 800, 700 mW, 30 fps spectral polarization imager,” in Circuits and Systems (ISCAS) 2015 IEEE International Symposium (IEEE 2015), 1106–1109.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       RGB full-Stokes video of a rotating polarization wheel is taken by an RGB full-Stokes camera. Videos of four Stokes parameters and DoLP a DoCP at each color channel are included. The polarization wheel is covered with linear polarizers in the outer c

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 The sensor array and Bayer color filter array of the color polarization camera have a 4.5µm pitch. The linear micro-polarizer array has a 9µm pitch.
Fig. 2
Fig. 2 The schematics of the RGB full-Stokes camera. An external color filter is added to narrow the transmission band of each of the RGB color.
Fig. 3
Fig. 3 The measured retardance curve of the achromatic QWP and the transmittance of the cube beamsplitter.
Fig. 4
Fig. 4 Alignment result using a USAF resolution test chart taken by the two cameras is shown on the left. Plots of the intensity profile along different lines (Line 1 to Line 4) of the captured images are shown on the right.
Fig. 5
Fig. 5 Top: the histograms of the diattenuation of red (left), green (middle) and blue (right) pixels are shown. The dashed lines represent the average value. Bottom: the calibrated analyzer vectors of all red (left), green (middle), and blue (right) pixels of the two cameras are plotted on the Poincaré sphere. The black dots represent the analyzer vector of the ideal case.
Fig. 6
Fig. 6 The misalignment between micro-polarizer array and color filter array causes the different diattenuation between three color channels.
Fig. 7
Fig. 7 The DoCP and DoLP are measured at different retarder orientations. (a) The solid line represents the DoCP and DoLP characterized by an Axometrics polarimeter. The solid dot and error bar represents the average DoCP and DoLP measurements and standard deviation of the camera, respectively. (b) The difference between the Axometrics polarimeter measurements and camera average measurements is plotted as a function of retarder angles. (c) The standard deviation of the camera measurements is plotted as a function of retarder angles.
Fig. 8
Fig. 8 The RGB full-Stokes image of phone displays with an Android phone displaying a color target on the left, an iPhone displaying a color target in the middle, and paper color target on the right.
Fig. 9
Fig. 9 The RGB full-Stokes image of a window building. The window is highlighted in the DoLP images.
Fig. 10
Fig. 10 A photo shows the top view of the alignment experiment setup.
Fig. 11
Fig. 11 A schematic shows the first step of the alignment process.
Fig. 12
Fig. 12 The spectral response of the camera color sensor and the transmission spectrum of the external color filter are shown.
Fig. 13
Fig. 13 The calibration setup of the RGB full-Stokes camera is shown.
Fig. 14
Fig. 14 A schematic of the interpolation of the red, green, and blue pixels is shown. The dashed lines represent the direction of interpolation. Note that the green pixel is divided into two independent set of pixels which are interpolated separately.
Fig. 15
Fig. 15 The RGB full-Stokes image of a chopper wheel with circular polarizer placed at the inner wheel and linear polarizer placed at the outer wheel.
Fig. 16
Fig. 16 The RGB full-Stokes image of three beetles shows the exoskeletons acting like a reflective polarizer.
Fig. 17
Fig. 17 The RGB full-Stokes image of several toys is shown.
Fig. 18
Fig. 18 The RGB full-Stokes image of sky taken through a window shows the stress birefringence of the glass in the window.
Fig. 19
Fig. 19 The RGB full-Stokes image of the sky, clouds, and mountain is shown.
Fig. 20
Fig. 20 The RGB full-Stokes image of cars in assorted colors is shown.

Tables (1)

Tables Icon

Table 1 Noise comparison between the actual camera and the perfect case

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

MSE= 1 MN 1iM 1jN ( I 1 (i,j)- I 2 (i,j)) 2 .
RAD= j=0 R1 1 μ j ,CN= μ max μ min ,EWV= j=0 R1 1 μ j 2 ,
I=AS A=[ A R A G A B ] =[ a R0 a R1 a R2 a R3 a G0 a G1 a G2 a G3 a B0 a B1 a B2 a B3 ] S=[ S R S G S B ] T = [ S R0 S R1 S R2 S R3 S G0 S G1 S G2 S G3 S B0 S B1 S B2 S B3 ] T
I=[ I 1 ... I 54 ],S=[ S R0 1 ... S R0 54 S B3 1 ... S B3 54 ] I=AS
A=I S +
I=[ I 1 I 54 ],W=[ a R0 1 ... a B3 1 a R0 54 ... a B3 54 ],S=[ S R0 S B3 ] I=WS
S= W + I

Metrics