Abstract

This article provides a numerical study of the expected improvements in an underwater optical system given by a single-mode laser diode operating within a Fraunhofer line in a coastal water type. The system performance is examined for a silicon PIN direct-detection receiver in the euphotic zone. The solar irradiance, modelled as white noise, is evaluated when using a lithium niobate interference and a birefringent filter with different field-of-view (FOV) characteristics in a clear sky situation. The results of this analysis show the inverse dependence of the signal-to-noise (SNR) on the FOV, along with the significant improvement in the receiver sensitivity given by a narrow optical bandpass filter (OBPF).

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of solar noise impact on the performance of underwater wireless optical communication links

Tasnim Hamza, Mohammad-Ali Khalighi, Salah Bourennane, Pierre Léon, and Jan Opderbecke
Opt. Express 24(22) 25832-25845 (2016)

Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems

Chadi Gabriel, Mohammad-Ali Khalighi, Salah Bourennane, Pierre Léon, and Vincent Rigaud
J. Opt. Commun. Netw. 5(1) 1-12 (2013)

Simulating channel losses in an underwater optical communication system

William Cox and John Muth
J. Opt. Soc. Am. A 31(5) 920-934 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.
  2. B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
    [Crossref]
  3. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
    [Crossref] [PubMed]
  4. T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
    [Crossref]
  5. M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
    [Crossref]
  6. J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
    [Crossref]
  7. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
    [Crossref]
  8. G. C. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis, vol. 19 (Springer Science & Business Media, 2007).
  9. M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).
  10. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  11. C. Mobley, “Light and Water: Radiative Transfer in Natural Waters” (Academic, 1994).
  12. J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
    [Crossref]
  13. S. Koeppen and R. Walker, “Effective radiance attenuation coefficients for underwater imaging”, in “19th Annual Technical Symposium,” (International Society for Optics and Photonics, 1975), pp. 94–102.
  14. X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [Crossref] [PubMed]
  15. J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel”, in IEEE OCEANS Conf., Biloxi, MS (IEEE, 2009), pp. 1–6.
  16. E. Hecht, Optics (Addison-Wesley, 2001).
  17. A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).
  18. M. Cvijetic, Optical Transmission Systems Engineering (Artech House, 2004).
  19. R. Anderson and M. Hyde, “Underwater optical communications receivers”, in 21st Annual Technical Symposium (International Society for Optics and Photonics, 1978), pp. 79–88.
  20. R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
    [Crossref]
  21. A. Title and W. Rosenberg, “Improvements in birefringent filters. 5: Field of view effects,” Appl. Opt. 18, 3443–3456 (1979).
    [Crossref] [PubMed]
  22. E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).
    [Crossref]

2016 (1)

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

2014 (1)

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

2013 (3)

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
[Crossref] [PubMed]

2010 (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[Crossref]

2000 (1)

B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
[Crossref]

1995 (1)

1979 (1)

Anderson, R.

R. Anderson and M. Hyde, “Underwater optical communications receivers”, in 21st Annual Technical Symposium (International Society for Optics and Photonics, 1978), pp. 79–88.

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[Crossref]

Atwood, D.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Bales, J.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Bastiman, F.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Bellingham, J.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Bennett, S.

R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
[Crossref]

Bhogul, P. K.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Bird, J. S.

B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
[Crossref]

Blanchard, P. M.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Cheong, J. S.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Chryssostomidis, C.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Consi, T.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Cvijetic, M.

M. Cvijetic, Optical Transmission Systems Engineering (Artech House, 2004).

David, J. P. R.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Desurvire, E.

E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).
[Crossref]

Docherty, K. E.

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

Fry, E. S.

Goudey, C.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Govindjee,

G. C. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis, vol. 19 (Springer Science & Business Media, 2007).

Grzanka, S.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2001).

Helland, P. D.

B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
[Crossref]

Hollins, R.

R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
[Crossref]

Hughes, B. L.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel”, in IEEE OCEANS Conf., Biloxi, MS (IEEE, 2009), pp. 1–6.

Hyde, M.

R. Anderson and M. Hyde, “Underwater optical communications receivers”, in 21st Annual Technical Symposium (International Society for Optics and Photonics, 1978), pp. 79–88.

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

Kaye, G.

M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).

Kelly, A.

Kelly, A. E.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Kelly, A.E.

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

Kirk, J. T.

J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
[Crossref]

Koeppen, S.

S. Koeppen and R. Walker, “Effective radiance attenuation coefficients for underwater imaging”, in “19th Annual Technical Symposium,” (International Society for Optics and Photonics, 1975), pp. 94–102.

Krysa, A. B.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Laval, B.

B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
[Crossref]

Leonard, J.

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

Leszczynski, M.

Lovern, M.

M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).

Marona, L.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Meredith, W.

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

Miller, S.

M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).

Mobley, C.

C. Mobley, “Light and Water: Radiative Transfer in Natural Waters” (Academic, 1994).

Muth, J. F.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel”, in IEEE OCEANS Conf., Biloxi, MS (IEEE, 2009), pp. 1–6.

Najda, S. P.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
[Crossref] [PubMed]

Ng, J. S.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Odedina, O.

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

Ong, J. S. L.

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

Papageorgiou, G. C.

G. C. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis, vol. 19 (Springer Science & Business Media, 2007).

Perlin, P.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
[Crossref] [PubMed]

Quan, X.

Rabl, A.

A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).

Roberts, M.

M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).

Rosenberg, W.

Rudge, A.

R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
[Crossref]

Simpson, J. A.

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel”, in IEEE OCEANS Conf., Biloxi, MS (IEEE, 2009), pp. 1–6.

Slight, T. J.

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

Stace, C.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Tan, M.

Targowski, G.

Title, A.

Valyrakis, M.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Walker, R.

S. Koeppen and R. Walker, “Effective radiance attenuation coefficients for underwater imaging”, in “19th Annual Technical Symposium,” (International Society for Optics and Photonics, 1975), pp. 94–102.

Watson, M. A.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Watson, S.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
[Crossref] [PubMed]

White, H. J.

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technology Letters (1)

T. J. Slight, O. Odedina, W. Meredith, K. E. Docherty, and A.E. Kelly, “InGaN/GaN distributed feedback laser diodes with deeply etched sidewall gratings,” IEEE Photonics Technology Letters 28, 2886–2888 (2016).
[Crossref]

J. Atmos. Oceanic Tech. (1)

B. Laval, J. S. Bird, and P. D. Helland, “An autonomous underwater vehicle for the study of small lakes,” J. Atmos. Oceanic Tech. 17, 69–76 (2000).
[Crossref]

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (3)

M. A. Watson, P. M. Blanchard, C. Stace, P. K. Bhogul, H. J. White, A. E. Kelly, S. Watson, M. Valyrakis, S. P. Najda, L. Marona, and P. Perlin, “Assessment of laser tracking and data transfer for underwater optical communications,” Proc. SPIE 9248, 92480T (2014).
[Crossref]

J. S. Cheong, J. S. L. Ong, J. S. Ng, A. B. Krysa, F. Bastiman, and J. P. R. David, “Design of high sensitivity detector for underwater communication system,” Proc. SPIE 8899, 88990G (2013).
[Crossref]

R. Hollins, A. Rudge, and S. Bennett, “Technologies for blue-green underwater optical communications,” Proc. SPIE 8899, 88990F (2013).
[Crossref]

Other (13)

J. Bellingham, C. Goudey, T. Consi, J. Bales, D. Atwood, J. Leonard, and C. Chryssostomidis, “A second generation survey AUV,” in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology (IEEE, 1994), pp. 148–155.

E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist (Cambridge University, 2009).
[Crossref]

J. A. Simpson, B. L. Hughes, and J. F. Muth, “A spatial diversity system to measure optical fading in an underwater communications channel”, in IEEE OCEANS Conf., Biloxi, MS (IEEE, 2009), pp. 1–6.

E. Hecht, Optics (Addison-Wesley, 2001).

A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).

M. Cvijetic, Optical Transmission Systems Engineering (Artech House, 2004).

R. Anderson and M. Hyde, “Underwater optical communications receivers”, in 21st Annual Technical Symposium (International Society for Optics and Photonics, 1978), pp. 79–88.

G. C. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: A Signature of Photosynthesis, vol. 19 (Springer Science & Business Media, 2007).

M. Lovern, M. Roberts, S. Miller, and G. Kaye, “Oceanic in situ Fraunhofer-line characteristics (Fraunhofer-Line Underwater eXperiment: FLUX)”, Tech. rep., DTIC Document (1992).

N. G. Jerlov, Marine Optics (Elsevier, 1976).

C. Mobley, “Light and Water: Radiative Transfer in Natural Waters” (Academic, 1994).

J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
[Crossref]

S. Koeppen and R. Walker, “Effective radiance attenuation coefficients for underwater imaging”, in “19th Annual Technical Symposium,” (International Society for Optics and Photonics, 1975), pp. 94–102.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)–(b) Solar background density density for two topologies of filter at a depth of 5 m. (c)–(d) Their relative PSDs are approximately constant for different filter bandwidths.
Fig. 2
Fig. 2 Comparison of the electrical SNR as a function of the received power for a system within, outside a Fraunhofer line and for a receiver without any optical filtering.
Fig. 3
Fig. 3 Comparison of the electrical SNR profiles as a function of the FOV at a depth of 5 m for various configurations at the receivers when adopting different filters.
Fig. 4
Fig. 4 Schematic of system geometry used in the simulations.
Fig. 5
Fig. 5 Comparison of the maximum datarate for an UOCS operating at two different optical wavelengths without any optical filtering at the receiver, and with two different types of filter.

Tables (1)

Tables Icon

Table 1 List of parameters used in this work for the simulated UOCS.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( z , λ ) = P LD exp ( c ( λ ) z )
E d ( z , λ ) = E d ( 0 ) exp ( K d ( λ ) z )
σ sn 2 = 2 q M 2 [ R ( P sig + P bg ) + I D ] BW n
σ the 2 = 4 k B T BW n R L
σ sig bg 2 = 4 M R 2 P sig P bg BW n B op
σ bg bg 2 = ( R P bg ) 2 [ 2 BW b B op ] BW n B op
P 1 ( x , λ ) = T LD T RX P LD exp ( c ( λ ) z )
SNR = ( I 1 I 0 ) 2 σ 1 2 + σ 0 2 = [ M R ( P 1 P 0 ) ] 2 σ 1 2 + σ 0 2 = [ M R P 1 ( 1 r e x ) ] 2 σ 1 2 + σ 0 2
C = BW n log 2 ( 1 + SNR ) ( bit / s )
BER NRZ OOK = 1 2 erfc ( SNR 2 2 )

Metrics