Abstract

We report measurements of time-frequency entangled photon pairs and heralded single photons at 1550 nm wavelengths generated using a microring resonator pumped optically by a diode laser. The conventional metrics used to describe performance, such as Coincidences-to-Accidentals Ratio (CAR), conditional self-correlation [g(2) (0) ], two-photon energy-time Franson interferometric visibility etc. are shown to reach a high-performance regime not yet achieved by silicon photonics, and attained previously only by crystal, glass and fiber-based pair-generation devices.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of high-purity entangled photon pairs using silicon wire waveguide

Ken-ichi Harada, Hiroki Takesue, Hiroshi Fukuda, Tai Tsuchizawa, Toshifumi Watanabe, Koji Yamada, Yasuhiro Tokura, and Sei-ichi Itabashi
Opt. Express 16(25) 20368-20373 (2008)

Photon-pair and heralded single photon generation initiated by a fraction of a 10 Gbps data stream

Chaoxuan Ma, Xiaoxi Wang, and Shayan Mookherjea
Opt. Express 26(18) 22904-22915 (2018)

Photon pair generation from compact silicon microring resonators using microwatt-level pump powers

Marc Savanier, Ranjeet Kumar, and Shayan Mookherjea
Opt. Express 24(4) 3313-3328 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref] [PubMed]
  2. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref] [PubMed]
  3. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  4. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
    [Crossref]
  5. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
  6. C. M. Gentry, J. M. Shainline, M. T. Wade, M. J. Stevens, S. D. Dyer, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popovic, “Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip,” Optica 2, 1065–1071 (2015).
    [Crossref]
  7. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
    [Crossref] [PubMed]
  8. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
    [Crossref] [PubMed]
  9. X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-q silicon microdisk,” Optica 3, 1331–1338 (2016).
    [Crossref]
  10. M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
    [Crossref]
  11. M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
    [Crossref]
  12. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
    [Crossref] [PubMed]
  13. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
    [Crossref]
  14. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref] [PubMed]
  15. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
    [Crossref] [PubMed]
  16. M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992–24001 (2016).
    [Crossref] [PubMed]
  17. X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.
  18. C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
    [Crossref]
  19. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).
  20. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
    [Crossref] [PubMed]
  21. X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
    [Crossref]
  22. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
    [Crossref] [PubMed]
  23. J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.
  24. M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
    [Crossref]
  25. M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
    [Crossref]
  26. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
    [Crossref] [PubMed]
  27. F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
    [Crossref]
  28. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
    [Crossref] [PubMed]
  29. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
    [Crossref] [PubMed]
  30. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express 16, 20368–20373 (2008).
    [Crossref] [PubMed]
  31. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  32. R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
    [Crossref] [PubMed]
  33. J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
    [Crossref]
  34. R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
    [Crossref] [PubMed]
  35. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
    [Crossref]
  36. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  37. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
    [Crossref]
  38. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  39. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
    [Crossref] [PubMed]
  40. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
    [Crossref] [PubMed]
  41. M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
    [Crossref] [PubMed]
  42. S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
    [Crossref]

2017 (2)

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (10)

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

C. M. Gentry, J. M. Shainline, M. T. Wade, M. J. Stevens, S. D. Dyer, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popovic, “Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip,” Optica 2, 1065–1071 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

2013 (5)

2012 (4)

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

2007 (1)

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

2006 (1)

2005 (1)

2002 (1)

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Agha, I.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Aktas, D.

Alsing, P. M.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Andreani, L. C.

Ansari, V.

Aoki, T.

Asobe, M.

Assefa, S.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Azzini, S.

Baehr-Jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Baets, R. G.

Bajoni, D.

Barbieri, M.

Bashkansky, M.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Becher, C.

Beck, M.

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

Belabas-Plougonven, N.

Bentivegna, M.

Bienfang, J. C.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Bock, M.

Bogaerts, W.

Bonneau, D.

Booth, M. J.

Borselli, M.

Brecht, B.

Brida, G.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Cassan, E.

Chen, J.

Cheng, R.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Christensen, B. G.

Chunnilall, C.

Clark, A. S.

Clemmen, S.

Davanco, M.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Degiovanni, I. P.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Dirmeier, T.

Dong, S.

Dorenbos, S. N.

Doussiere, P.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Dyer, S. D.

Emplit, P.

Engin, E.

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Ezaki, M.

Fan, J.

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
[Crossref] [PubMed]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Fanto, M. L.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Foster, M. A.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Frera, A. D.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Fujiwara, M.

Fukuda, H.

Gaeta, A. L.

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Galli, M.

Genovese, M.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gentry, C. M.

Gerrits, T.

Ghioni, M.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gisin, N.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Giudice, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Grassani, D.

Green, W. M. J.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Gulinatti, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Guo, X.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Guo, Y.

Hadfield, R. H.

Harada, K.-i.

Harder, G.

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Helt, L. G.

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Howland, G. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Huang, Y.

Humphreys, P. C.

Huy, K. P.

Iizuka, N.

Inagaki, T.

Itabashi, S.-i.

Jiang, W. C.

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Jin, X.-M.

Johnson, T.

Jones, R.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Jung, H.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Kaiser, F.

Kaneda, F.

Kolthammer, W. S.

Kumar, P.

Kumar, R.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Kwiat, P. G.

F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
[Crossref]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Labonté, L.

Langford, N. K.

Lee, K. F.

Lenhard, A.

Levine, Z. H.

Lin, Q.

Lipson, M.

Liscidini, M.

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Lu, X.

Lunghi, T.

Lv, N.

Ma, C.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Marquardt, C.

Marris-Morini, D.

Massar, S.

Matsuda, N.

Mazeas, F.

McCusker, K. T.

Metcalf, B. J.

Migdall, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Migdall, A. L.

Mirin, R. P.

Mookherjea, S.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Moore, M.

Nam, S. W.

Nambu, Y.

Natarajan, C. M.

Ngah, L. A.

O’Brien, J. L.

Ohira, K.

Ong, J. R.

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Painter, O.

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Park, H. S.

Pavanello, F.

Peng, J.

Pernice, W.

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Piacentini, F.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Picholle, E.

Pipino, A. C. R.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Polyakov, S. V.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Popovic, M. A.

Preble, S. F.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Ramos, C. A.

Reintjes, J.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Rogers, S.

Rong, H.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Roux, X. L.

Salter, P. S.

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Sasaki, M.

Sauder, G.

Savanier, M.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

Scarcella, C.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Schmidt, B. S.

Schuck, C.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Shainline, J. M.

Sharping, J. E.

Shehata, A. B.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Silberhorn, C.

Silverstone, J. W.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Sipe, J. E.

Sorel, M.

Spring, J. B.

Srinivasan, K.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Steidle, J. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Stevens, M. J.

Strain, M. J.

Suo, J.

Suzuki, N.

Tadanaga, O.

Takeoka, M.

Takesue, H.

Tang, H.

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Tang, H. X.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Tanner, M. G.

Tanzilli, S.

Thew, R. T.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thomas-Peter, N.

Thompson, M. G.

Tison, C. C.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Tittel, W.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Tokura, Y.

Tosi, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Traetta, M.

Traina, P.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Tsuchizawa, T.

Turner, A. C.

Vivien, L.

Vurgaftman, I.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Wade, M. T.

Wakabayashi, R.

Walmsley, I. A.

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Wang, X.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Wang, Z.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Watanabe, T.

Wong, J. J.

Xia, F.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Yamada, K.

Yoshida, H.

Yoshino, K. ichiro

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zbinden, H.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Zeng, X.

Zhang, J.

Zhang, W.

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zhou, Q.

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zou, C.-l.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Zwiller, V.

Appl. Phys. Lett. (5)

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

J. Opt. Soc. Am. B: Opt. Phys. (1)

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

Light Sci. Appl. (1)

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Nat. Commun. (1)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Opt. Express (19)

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
[Crossref] [PubMed]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref] [PubMed]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref] [PubMed]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992–24001 (2016).
[Crossref] [PubMed]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref] [PubMed]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (4)

Phys. Rev. A (3)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Phys. Rev. Appl. (1)

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Phys. Rev. Lett. (2)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Other (3)

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (A) The experimental configuration for pair generation, and measurement of the coincidences-to-accidentals ratio (CAR). ATT: Variable optical attenuator, TEC: thermo electric controller, TCSPC: time-correlated single-photon counter. ROADM: 3-port reconfigurable optical add-drop multiplexer. (B) Modifications to the detection setup for measurement of the conditional (heralded) self-correlation, g(2) (0). (C) Measurement of two-photon Franson interferometric visibility using the folded configuration. DLI: Delay-Line Interferometer. (D) Measurement of two-photon Franson interferometric visibility using the un-folded configuration.
Fig. 2
Fig. 2 (A) Singles count rates (in Hz, raw measurements, not scaled) versus (cw) optical pump power in the feeder silicon waveguide. The difference in single counts between the signal and idler channels stems from the slightly different losses through the filters (5.0 dB and 7.2 dB respectively). (B) Coincidence rate (in Hz), using the setup shown in Fig. 1(A). The left-hand side vertical axis shows the scaled coincidence count rates, accounting for chip coupling loss, filter insertion loss and detection efficiency. From the fit of this data, we infer the pair generation rate (PGR) as discussed in Section 3.1. The right-hand side vertical axis shows the raw measured coincidence count rates (Hz).
Fig. 3
Fig. 3 Pair generation. (A) Coincidences-to-Accidentals Ratio (CAR) versus (cw) optical pump power in the feeder waveguide before the microring. The error bars are one standard deviation, calculated as described in the text. The highest measured CAR was 12, 105 ± 1, 821. (B) The start-stop coincidence counting histogram for the highest CAR value. The inset shows a segment of the accidental coincidences. (C) Fit of the coincidence peak using a Gaussian function, with FWHM of 0.315 ns.
Fig. 4
Fig. 4 Heralded single photon generation. Conditional self-correlation (heralded auto-correlation) g H ( 2 ) ( 0 ) measured using the setup shown in Fig. 1(B). The error bars are one standard deviation. The lowest measured g H ( 2 ) ( 0 ) was 0.00533 ± 0.021.
Fig. 5
Fig. 5 (A) Representative histogram for the measurement of energy-time entanglement (at a particular phase setting of the DLI’s), with an acquisition time of 5 s. The solid black line, showing the sum of the three Gaussians shown in red, blue and green dashed lines, fits the black dots which show the binned coincidence measurements. (B) Two-photon interference pattern measured using the folded Franson interferometer configuration. Grey dots (with errorbars): measured experimental data (coincidence counts), black line: fit. (C) The singles counts for the folded interferometer, measured at the same time as the two-photon coincidences. (D) Two-photon interference pattern measured using the un-folded Franson interferometer configuration. The interference pattern for two different phase settings on the second delay-line interferometer are shown. Grey and blue dots (with errorbars): experimental data, black solid and dashed lines: fit. (E) The singles counts for the unfolded interferometer.

Tables (1)

Tables Icon

Table 1 Recent results of photon pair generation using silicon microring resonators (comparison: recent silicon microdisk results)

Metrics