Abstract

We demonstrate two-color dispersive wave emission in the ultraviolet and near-infrared regions in an argon filled hypocycloid-core kagome fiber pumped by a femtosecond laser around 1 μm. These two dispersive waves show drastically distinct features in terms of bandwidth and tunability. The dispersive wave in the ultraviolet region has a bandwidth of tens of nanometers and can be widely tuned from at least 267 nm to 460 nm by changing the gas pressure, input pulse energy, and pump wavelength. In contrast, the dispersive wave in the near-infrared region has a narrower bandwidth of ~5 nm and is quite stably positioned near the edge of the fundamental transmission band even if the gas pressure or input pulse energy is significantly changed. An antiresonant tube model is applied to explain the experimental results and a good agreement is found between them. The dynamics show that the narrow-band dispersive wave in the near-infrared region originates from the steep slope of the dispersion near the edge of the transmission band.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber

Evgenii E. Serebryannikov, Dietrich von der Linde, and Aleksei M. Zheltikov
Opt. Lett. 33(9) 977-979 (2008)

Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF

Ka Fai Mak, John C. Travers, Philipp Hölzer, Nicolas Y. Joly, and Philip St. J. Russell
Opt. Express 21(9) 10942-10953 (2013)

Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF

Marco Cassataro, David Novoa, Mehmet C. Günendi, Nitin N. Edavalath, Michael H. Frosz, John C. Travers, and Philip St.J. Russell
Opt. Express 25(7) 7637-7644 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
    [Crossref] [PubMed]
  2. P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
    [Crossref] [PubMed]
  3. P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
    [Crossref] [PubMed]
  4. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9(1), 91–97 (1992).
    [Crossref]
  5. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2073–2082 (1993).
    [Crossref] [PubMed]
  6. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [Crossref] [PubMed]
  7. J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
    [Crossref]
  8. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
    [Crossref] [PubMed]
  9. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [Crossref] [PubMed]
  10. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004).
    [Crossref] [PubMed]
  11. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12(9), 1932–1937 (2004).
    [Crossref] [PubMed]
  12. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
    [Crossref]
  13. H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17(20), 17983–17988 (2009).
    [Crossref] [PubMed]
  14. G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19(7), 6635–6647 (2011).
    [Crossref] [PubMed]
  15. X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
    [Crossref] [PubMed]
  16. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
    [Crossref] [PubMed]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  18. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  19. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  20. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  21. E. A. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  22. J. Nold, P. Hölzer, N. Y. Joly, G. K. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. S. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
    [Crossref] [PubMed]
  23. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  24. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
    [Crossref]
  25. J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [Crossref]
  26. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  27. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
    [Crossref]
  28. H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
    [Crossref]
  29. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  30. T. Baba and Y. Kokubun, “High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer,” Appl. Opt. 29(18), 2781–2792 (1990).
    [Crossref] [PubMed]
  31. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [Crossref] [PubMed]
  32. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
    [Crossref] [PubMed]
  33. F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146 (2016).
    [Crossref]
  34. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
    [Crossref]
  35. F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M.-L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K–4.
  36. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [Crossref] [PubMed]
  37. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from Kagome-lattice HC-PCFs,” Opt. Express 18(6), 5367–5374 (2010).
    [Crossref] [PubMed]
  38. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
    [Crossref] [PubMed]
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  40. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
    [Crossref] [PubMed]
  41. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
    [Crossref] [PubMed]

2017 (2)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

2016 (2)

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146 (2016).
[Crossref]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

2015 (1)

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

2014 (2)

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

2013 (2)

2011 (5)

2010 (4)

2009 (1)

2008 (1)

2007 (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

2006 (1)

2004 (3)

2003 (1)

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

1995 (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
[Crossref]

1993 (2)

V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2073–2082 (1993).
[Crossref] [PubMed]

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

1992 (1)

1990 (2)

T. Baba and Y. Kokubun, “High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer,” Appl. Opt. 29(18), 2781–2792 (1990).
[Crossref] [PubMed]

P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
[Crossref] [PubMed]

1986 (1)

1980 (1)

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[Crossref]

1978 (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

1964 (1)

E. A. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Alharbi, M.

Archambault, J.-L.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Austin, D. R.

Baba, T.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Benabid, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Black, R. J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Boppart, S. A.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17(20), 17983–17988 (2009).
[Crossref] [PubMed]

Börzsönyi, A.

Brabec, T.

J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
[Crossref]

Bradley, T.

Brown, T. G.

Bures, J.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Chai, L.

Chang, G.

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Chen, H. H.

P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
[Crossref] [PubMed]

P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

Chen, L.-J.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Cristiani, I.

de Sterke, C. M.

Debord, B.

Degiorgio, V.

Dunn, S. C.

Eggleton, B. J.

Elgin, J.

J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
[Crossref]

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

Genty, G.

Gerome, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Gérôme, F.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

Gordon, J. P.

Heiner, Z.

Herrmann, J.

S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from Kagome-lattice HC-PCFs,” Opt. Express 18(6), 5367–5374 (2010).
[Crossref] [PubMed]

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Hölzer, P.

Hu, J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Hu, M.

Husakou, A.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

Im, S.-J.

Joly, N. Y.

Kalashnikov, M. P.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Karpman, V. I.

V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2073–2082 (1993).
[Crossref] [PubMed]

Kärtner, F. X.

Kelly, S.

J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
[Crossref]

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146 (2016).
[Crossref]

Kokubun, Y.

Kovács, A. P.

Lacroix, S.

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Lægsgaard, J.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Lee, Y. C.

P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
[Crossref] [PubMed]

P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

Lehtonen, M.

Liang, H.

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Litchinitser, N. M.

Liu, X.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Ludvigsen, H.

Mak, K. F.

Marcatili, E. A.

E. A. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marom, E.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

McPhedran, R. C.

Menyuk, C. R.

Miyagi, M.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[Crossref]

Nazarkin, A.

Nishida, S.

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[Crossref]

Nold, J.

Osvay, K.

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Podlipensky, A.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Ruan, S.

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Russell, P. S. J.

Scharrer, M.

Schmeltzer, R.

E. A. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

Setti, V.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

Su, H.

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Svane, A. S.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Tartara, L.

Tediosi, R.

Travers, J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Travers, J. C.

Tu, H.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17(20), 17983–17988 (2009).
[Crossref] [PubMed]

Turchinovich, D.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Usner, B.

Vincetti, L.

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wai, P. K.

P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
[Crossref] [PubMed]

P. K. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[Crossref] [PubMed]

Wang, C. Y.

Wang, Y. Y.

Wei, C.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Weiblen, R. J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Wheeler, N. V.

White, T. P.

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Wong, G. K.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. S. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[Crossref] [PubMed]

Yariv, A.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146 (2016).
[Crossref]

Zeisberger, M.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

Zhang, M.

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Zhao, X.

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Zheltikov, A.

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

E. A. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28(6), 536–541 (1980).
[Crossref]

J. Lightwave Technol. (1)

J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68(9), 1196–1201 (1978).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre,” Nat. Commun. 6, 6117 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Commun. (1)

J. Elgin, T. Brabec, and S. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114(3–4), 321–328 (1995).
[Crossref]

Opt. Express (12)

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
[Crossref] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004).
[Crossref] [PubMed]

M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12(9), 1932–1937 (2004).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 17(20), 17983–17988 (2009).
[Crossref] [PubMed]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19(7), 6635–6647 (2011).
[Crossref] [PubMed]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from Kagome-lattice HC-PCFs,” Opt. Express 18(6), 5367–5374 (2010).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
[Crossref] [PubMed]

Opt. Lett. (4)

Optik (Stuttg.) (1)

H. Liang, S. Ruan, M. Zhang, H. Su, and X. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum (Au)/polystyrene (PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Phys. Rev. A (2)

P. K. Wai, H. H. Chen, and Y. C. Lee, “Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41(1), 426–439 (1990).
[Crossref] [PubMed]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2073–2082 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref] [PubMed]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (2)

F. Meng, S. Gao, Y. Wang, P. Wang, J. Liu, S. Wang, B. Liu, Y. Li, C. Wang, and M.-L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper STu3K–4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross sections and fundamental mode profiles of the (a) Kagome fiber and (b) antiresonant tube. (c) The normalized z-Poynting vectors for the two structures. The blue and black curves correspond to the z-Poynting vectors of the Kagome fiber along the x- and y-axes, respectively and the red curve represents that of the antiresonant tube. (d) The effective modal indices for the Kagome fiber and antiresonant tube are shown by the blue and red curves, respectively. The black curve shows the modal index calculated from the capillary waveguide model [21]. The gray blocks in the figure represent the resonant regions of the fiber.
Fig. 2
Fig. 2 GVD curves of the antiresonant tube (solid curves) and the corresponding capillary waveguide model (dotted curves) at different argon pressures. The light-red (1), orange (2), green (3) and purple (4) regions show the transmission bands separated by the resonant regions.
Fig. 3
Fig. 3 (a) Experimental set-up, L1-L4 are lenses. HWP is half-wave plate. OSA1 and OSA2 are optical spectrum analyzers. Power control is provided by VND (variable neutral density filter). Filter (FEL0850, Thorlabs) is used to block undesirable visible output wavelengths. The inset is the far-field beam profile. (b) Scanning electron microscope image of the cross section of the Kagome fiber (PMC-C-780, GLOphotonics). Superimposed in the center is the measured near-field beam profile. (c) The loss spectrum of the Kagome fiber.
Fig. 4
Fig. 4 Experimentally measured spectral evolution with (a) pulse energy coupled into the fiber at a pressure of 11 bar and (b) gas pressure at a pulse energy of 1.51 μJ for pump at 1080 nm. Theoretical simulation results for Fig. 4(a) with Fig. 4(c) antiresonant tube model and (d) capillary waveguide model.
Fig. 5
Fig. 5 Numerical simulation results for 1080 nm pump at a pulse energy of 1.51μJ and pressure of 11 bar. (a) Spectral evolution and (b) Temporal profile of the electric field along the propagation distance. Corresponding spectral (c) and electric field (d) profiles at typical distances. The labels (i), (ii), (iii) and (iv) in Figs. 5(a) and 5(b) represent the four different propagation stages.
Fig. 6
Fig. 6 (a) Phase mismatch curves calculated at a pump wavelength of 1080 nm, pulse energy of 1.51 μJ, and argon pressure of 8 bar. The solid-red and blue curves represent antiresonant tube and capillary waveguide models, respectively. The two dashed black circles indicate phase matching points (i.e., the NIR-DW and UV-DW). (b) Phase-matching wavelengths as a function of pump wavelength at different gas pressures. The colored solid curves represent the UV-DW, and the colored dotted curves correspond to the NIR-DW. The three insets show the experimentally measured spectra of the NIR-DW at pump wavelengths of 980 nm (1.51 μJ, 11 bar), 1040 nm (1.05 μJ, 6 bar) and 1080 nm (1.51 μJ, 5 bar), respectively. The three vertical dashed gray lines represent different pump wavelengths used in the experiment.
Fig. 7
Fig. 7 Experimental results (a) Output far-field beam spots of different spectral components at a pump wavelength of 980 nm, pulse energy of 1.51 μJ and argon pressure of 11 bar. (b) Tunable dispersive waves generated in the UV (VIS) wavelength range with different pump wavelengths, input pulse energies and argon pressures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n eff = n gas 2 ( u 11 k 0 a ) 2 ,
E ˜ (z,ω) z =i(β(ω) ω υ r ) E ˜ (z,ω) α(ω) 2 E ˜ (z,ω)+ i ω 2 2 c 2 ε 0 β(ω) P ˜ NL (z,ω)
Δβ=β(ω)β( ω 0 ) β 1 ( ω 0 )(ω ω 0 )γ P 0 /2

Metrics