Abstract

The dynamic high frequency aberration (HIFA) only emerges in the compensation process in adaptive optics (AO) systems. The static surface shape of a deformable mirror (DM), which is ensured perfectly smooth by various reported techniques, cannot be used to figure out whether the HIFA exist or not. The dynamic HIFA of the DM, which has not been studied systematically up to now, is investigated theoretically and experimentally in this paper. The mechanism of the dynamic HIFA of the DM is presented in the simulation. Analysis results indicate that the tilted actuators results in shear displacements on the DM’s surface shape and thus lead to the dynamic HIFA. The tilt mode of the DM is proposed to describe the surface shape patterns under different tilt conditions. In the experiment, the dynamic HIFA is identified and the tilt modes are exactly recognized on the manufactured DM with tilted actuators, while the correction ability and the fitting residual of this DM are verified to be much worse than that of an ideal DM. Our investigations could help researchers effectively recognize and depress the dynamic HIFA in their own DMs, which could ensure the high precision aberration control during the compensation process of AO system.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulational and experimental investigation on the print-through high-frequency aberration of the shear-joint NIF deformable mirror

Licheng Sun, Yamin Zheng, Chuang Sun, Shibing Lin, Deen Wang, and Lei Huang
Opt. Express 27(14) 19503-19519 (2019)

Theoretical and experimental research on temperature-induced surface distortion of deformable mirror

Chuang Sun, Licheng Sun, Yaming Zheng, Shibing Lin, and Lei Huang
Opt. Express 26(24) 32205-32224 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
    [Crossref]
  2. R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
    [Crossref]
  3. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: design and manufacturing,” Opt. Express 23(15), 19469–19477 (2015).
    [Crossref] [PubMed]
  4. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
    [Crossref] [PubMed]
  5. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
    [Crossref] [PubMed]
  6. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [Crossref] [PubMed]
  7. B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, “Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29(21), 2494–2496 (2004).
    [Crossref] [PubMed]
  8. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [Crossref] [PubMed]
  9. K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
    [Crossref] [PubMed]
  10. D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
    [Crossref]
  11. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
    [Crossref]
  12. Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
    [Crossref]
  13. L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
    [Crossref]
  14. M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
    [Crossref]
  15. Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
    [Crossref]
  16. Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
    [Crossref] [PubMed]
  17. X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
    [Crossref]
  18. C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
    [Crossref]
  19. Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
    [Crossref]
  20. J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

2017 (2)

K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
[Crossref] [PubMed]

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

2016 (2)

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: environmental testing,” Opt. Express 24(2), 1528–1542 (2016).
[Crossref] [PubMed]

2015 (2)

P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph deformable mirror for space telescopes: design and manufacturing,” Opt. Express 23(15), 19469–19477 (2015).
[Crossref] [PubMed]

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

2014 (1)

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

2013 (2)

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

2010 (2)

2007 (1)

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

2004 (3)

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

B. Wattellier, J. Fuchs, J. P. Zou, K. Abdeli, H. Pépin, and C. Haefner, “Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29(21), 2494–2496 (2004).
[Crossref] [PubMed]

J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

2003 (1)

2002 (1)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

2000 (1)

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

1999 (2)

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Abdeli, K.

Barnier, J. N.

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

Bian, Q.

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Bliss, E.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Booth, M. J.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Bozec, X.

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Bruns, D. G.

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Burns, D.

Care, J. L.

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Chappuis, C.

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

Chen, G.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Chen, X.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Cortey, H.

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

Coustal, P.

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Dai, W.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Deng, W.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Deng, X.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Dong, L.

Feldman, M.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Feng, Z.

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Fu, X.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Fuchs, J.

Girkin, J.

Gong, M.

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Grange, C. G.

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

Grey, A.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Haefner, C.

Henesian, M.

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Henesian, M. A.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Honig, J.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Hu, D.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Huang, L.

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Huang, Z.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Ji, Y.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Jiang, W.

Jiao, L.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Jin, G.

Jing, F.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Juskaitis, R.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Kner, P.

K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
[Crossref] [PubMed]

Koch, J.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Lafiandra, C.

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Lawson, J.

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Lee, J.

J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

Lei, X.

Li, T.

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Li, W.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Li, X.

Liang, X.

Liu, L.

Liu, W.

Ma, X.

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Manes, K. R.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Marsh, P.

Michelin, J. L.

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Mortensen, L. J.

K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
[Crossref] [PubMed]

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Ning, Y.

Pépin, H.

Qiu, Y.

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Que, X.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Rausch, P.

Sacks, R.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Salmon, T.

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Shen, Z.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Stolz, C.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Stowers, I. F.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Tang, X.

Tehrani, K. F.

K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
[Crossref] [PubMed]

Toeppen, J.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Tong, Y.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Uhm, T.

J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

Van Atta, L.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Verpoort, S.

Wang, C.

Wang, D.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Wang, L.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Wang, M.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Wang, X.

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Wang, Y.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Wattellier, B.

Wei, X.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Whitman, P. K.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Widmayer, C. C.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Williams, W. H.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Wilson, T.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Winters, S.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Wittrock, U.

Woods, B.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Wu, D.

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Wu, W.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Xu, B.

Xu, Y.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Xue, Q.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Yan, H.

Yan, P.

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Z. Feng, Y. Qiu, T. Li, and G. Jin, “Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror,” Appl. Opt. 52(2), 280–287 (2013).
[Crossref] [PubMed]

Yang, P.

Yang, Y.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Youn, S.

J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

Ythier, R. M.

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

Yuan, Q.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zacharias, R.

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

Zhang, X.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zhao, J.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zheng, W.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zhou, W.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zhu, M.

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

Zhu, Q.

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Zou, J. P.

Appl. Opt. (1)

Fusion Eng. Des. (1)

M. Zhu, X. Chen, M. Wang, W. Wu, Y. Xu, G. Chen, Z. Huang, X. Fu, and X. Que, “Target area structural design of ShenGuangIII,” Fusion Eng. Des. 88(3), 165–169 (2013).
[Crossref]

J. Biomed. Opt. (1)

K. F. Tehrani, P. Kner, and L. J. Mortensen, “Characterization of wavefront errors in mouse cranial bone using second-harmonic generation,” J. Biomed. Opt. 22(3), 36012 (2017).
[Crossref] [PubMed]

J. Korean Phys. Soc. (1)

J. Lee, T. Uhm, and S. Youn, “First-order analysis of thin-plate deformable mirrors,” J. Korean Phys. Soc. 44(6), 1412–1416 (2004).

Laser Phys. (2)

Q. Bian, L. Huang, X. Wang, X. Ma, P. Yan, and M. Gong, “Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics,” Laser Phys. 25(12), 125101 (2015).
[Crossref]

Q. Xue, L. Huang, P. Yan, M. Gong, Y. Qiu, T. Li, Z. Feng, X. Ma, and Y. Wang, “Optimized structure parameters of deformable mirrors for wavefront correction in a high power laser system,” Laser Phys. 24(2), 025002 (2014).
[Crossref]

Opt. Commun. (2)

Q. Bian, L. Huang, X. Ma, Q. Xue, and M. Gong, “Effect of the particular temperature field on a National Ignition Facility deformable mirror,” Opt. Commun. 374, 119–126 (2016).
[Crossref]

D. Wang, D. Hu, Q. Yuan, Q. Xue, W. Zhou, Y. Yang, X. Zhang, X. Deng, Y. Wang, J. Zhao, W. Deng, X. Wei, W. Dai, F. Jing, Q. Zhu, and W. Zheng, “Wavefront control of main-ampli-er system in the SG-III laser facility,” Opt. Commun. 394, 92–97 (2017).
[Crossref]

Opt. Eng. (1)

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43(12), 2854–2865 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788–5792 (2002).
[Crossref] [PubMed]

Proc. SPIE (5)

R. Zacharias, E. Bliss, S. Winters, R. Sacks, M. Feldman, A. Grey, J. Koch, C. Stolz, J. Toeppen, L. Van Atta, and B. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

R. Zacharias, E. Bliss, M. Feldman, A. Grey, M. Henesian, J. Koch, J. Lawson, R. Sacks, T. Salmon, J. Toeppen, L. Van Atta, S. Winters, B. Woods, C. Lafiandra, and D. G. Bruns, “The National Ignition Facility(NIF) wavefront control system,” Proc. SPIE 3492, 678–692 (1999).
[Crossref]

X. Bozec, R. M. Ythier, J. L. Care, P. Coustal, and J. L. Michelin, “Preliminary design of the cavity end deformable mirror of the Laser MégaJoule,” Proc. SPIE 3492, 693–701 (1999).
[Crossref]

C. G. Grange, J. N. Barnier, C. Chappuis, and H. Cortey, “Design principle and first results obtained on the LMJ deformable mirror prototype,” Proc. SPIE 6584, 658403 (2007).
[Crossref]

L. Wang, Z. Shen, Y. Tong, Y. Ji, W. Li, L. Jiao, and D. Wu, “Calculation and simulation of the uniformity of grinding removal in ring polishing,” Proc. SPIE 7655, 765521 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Analysis model of the DM. (a) Typical structure of the DM. (b) The XZ coordinates and the normal displacement of the top surface of an actuator. (c) The XY coordinates and the shear displacements of the top surface of an actuator.
Fig. 2
Fig. 2 Typical tilt modes of the DM. (a) The tilt conditions of actuators. (b) The deformed surface shape of the DM. (c) The fitting residual of the DM after compensation. Note: As to the name of each TM, the first figure after “TM” represents the number of tilted actuators, while the other two figures represent the serial number. For example, TM101 represents the first mode when only one actuator is tilted, and TM603 represents the second mode when six actuators are tilted.
Fig. 3
Fig. 3 Zernike polynomial decomposition of TM601 mode. (a) TM601 mode. (b) Low frequency component. (c) High frequency components. (d) The fitting coefficients ratio of the low frequency component. Note: Here, the components with the Zernike polynomial orders larger than 48 are defined as the high frequency components, and the components with the Zernike polynomial orders less than 48 are defined as the low frequency components.
Fig. 4
Fig. 4 Decomposition and combination of the tilt modes. (a)-(c) Three TM206 modes. (d) The combination mode.
Fig. 5
Fig. 5 The fitting coefficients ratio of the first 48 orders Zernike polynomials of the tilt modes. (a) The new combination mode. (b) The difference between Fig. 3(d) and Fig. 5(a).
Fig. 6
Fig. 6 Three pairs of convexity and concavity, sharing a common convexity in the TM301 mode. Each colored ellipse represents a pair of convexity and concavity.
Fig. 7
Fig. 7 PV/RMS values of the deformed surface shape and the fitting residual. (a)–(b) The influence of the mirror materials and the actuator pitch angle. (c) The mirror thickness. (d) The actuator stretching length. (e) The contact area diameter (between the PZT actuator and the mirror).
Fig. 8
Fig. 8 Simulation results for two kinds of situations.
Fig. 9
Fig. 9 Lab-manufactured 116-actuator DM. (a) The photo. (b) The structure sketch.
Fig. 10
Fig. 10 Experiment results of the DMs. (a) The color temperature diagram of the deformed surface shape the DM1. (b) The interference fringes the DM1. (c) The Shack-Hartman closed-loop correction result of the DM1. (d) The color temperature diagram of the deformed surface shape the DM2. (e) The interference fringes the DM2. (f) The Shack-Hartman closed-loop correction result of the DM2.
Fig. 11
Fig. 11 Experiment result of the tilt modes recognition. The color temperature diagram of the TM101 mode (a1), the TM202 mode (b1), the TM203 mode (c1) and the TM301 mode (d1). The interference fringes of the TM101 mode (a2), the TM202 mode (b2), the TM203 mode (c2) and the TM301 mode (d2). The dashed circles represent the tilted actuators. The arrows represent the tilt directions of the actuators.

Tables (5)

Tables Icon

Table 1 Material parameters in finite element simulation

Tables Icon

Table 2 Tilt mode patterns

Tables Icon

Table 3 Correction ability of the DM on five tilt modes

Tables Icon

Table 4 PV value and RMS value of the two situations

Tables Icon

Table 5 Parameters of the DMs in the experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ x i = x i +HPtan φ i cos α i , y i = y i +HPtan φ i sin α i , z i =HG. U xi = U i sin φ i cos α i , = U yi = U i sin φ i sin α i , U zi = U i cos φ i .
W c (x,y)= i=1 n W i (x,y) .

Metrics