Abstract

We propose and demonstrate a low-power and low-current cryogenic readout interface for a superconducting nanowire single-photon detector (SSPD) using adiabatic quantum-flux-parametron (AQFP) logic. The AQFP readout interface samples and digitizes the current signal from an SSPD, generating binary output data in accordance with the detection behavior of the SSPD. We demonstrate the correct operation of an SSPD with the interface, where the AQFP readout interface and the SSPD are placed in separate 0.1-W Gifford–McMahon (GM) cryocoolers and are interconnected via coaxial cables. It was found that the temperature of the sample stage did not change even after the AQFP readout interface was turned on, which revealed that the AQFP readout interface uses sufficiently low power and current for a compact cryocooler.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of digital readout circuit for superconducting nanowire single photon detector

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel
Opt. Express 19(19) 18593-18601 (2011)

A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection

Shigehito Miki, Taro Yamashita, Zhen Wang, and Hirotaka Terai
Opt. Express 22(7) 7811-7820 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
  2. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).
  3. Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).
  4. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
  5. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [PubMed]
  6. T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
    [PubMed]
  7. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [PubMed]
  8. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
  9. L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).
  10. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).
  11. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [PubMed]
  12. A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area Superconducting Nanowire Single Photon detector arrays,” in 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE, 2014), pp. 1–4.
  13. S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
    [PubMed]
  14. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
  15. E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).
  16. Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).
  17. T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, “Demonstration of digital readout circuit for superconducting nanowire single photon detector,” Opt. Express 19(19), 18593–18601 (2011).
    [PubMed]
  18. M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).
  19. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).
  20. H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).
  21. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
    [PubMed]
  22. K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991).
  23. H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).
  24. H. Kang and S. B. Kaplan, “Current recycling and SFQ signal transfer in large scale RSFQ circuits,” IEEE Trans. Appl. Supercond. 13, 547–550 (2003).
  25. S. B. Kaplan, “Serial Biasing of 16 Modular Circuits at 50 Gb/s,” IEEE Trans. Appl. Supercond. 22, 1300103 (2012).
  26. K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).
  27. N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).
  28. M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).
  29. N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).
  30. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).
  31. K. Likharev, “Dynamics of some single flux quantum devices: I. Parametric quantron,” IEEE Trans. Magn. 13(1), 242–244 (1977).
  32. J. G. Koller and W. C. Athas, “Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information,” in Workshop on Physics and Computation (IEEE, 1992), pp. 267–270.
  33. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).
  34. S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).
  35. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).
  36. N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).
  37. T. Narama, Y. Yamanashi, N. Takeuchi, T. Ortlepp, and N. Yoshikawa, “Demonstration of 10k gate-scale adiabatic-quantum-flux-parametron circuits,” in The 15th International Superconductive Electronics Conference (ISEC 2015) (IEEE, 2015).
  38. Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).
  39. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).
  40. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
    [PubMed]

2017 (7)

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[PubMed]

2016 (3)

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

2015 (4)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).

2014 (4)

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

2013 (7)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).

2012 (2)

2011 (1)

2009 (1)

H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).

2007 (1)

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

2003 (1)

H. Kang and S. B. Kaplan, “Current recycling and SFQ signal transfer in large scale RSFQ circuits,” IEEE Trans. Appl. Supercond. 13, 547–550 (2003).

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

1995 (1)

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

1991 (2)

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991).

1977 (1)

K. Likharev, “Dynamics of some single flux quantum devices: I. Parametric quantron,” IEEE Trans. Magn. 13(1), 242–244 (1977).

Abe, Y.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Anant, V.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Ando, T.

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Arndt, M.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

Athas, W. C.

J. G. Koller and W. C. Athas, “Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information,” in Workshop on Physics and Computation (IEEE, 1992), pp. 267–270.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Bellei, F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Berggren, K. K.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Boes, F.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Bulgarini, G.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

Buller, G. S.

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Calandri, N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Casaburi, A.

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area Superconducting Nanowire Single Photon detector arrays,” in 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE, 2014), pp. 1–4.

Casas, J.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Charaev, I.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Chen, S.-J.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Chen, T.-Y.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Chen, X.-F.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

China, F.

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Dane, A. E.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Dauler, E. A.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Dobrovolskiy, S.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

Doerner, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Dorenbos, S. N.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[PubMed]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Engert, S.

Fan, J.-Y.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Fritzsch, L.

Gemmell, N. R.

Gérard, J.-M.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

Gerrits, T.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Gol’tsman, G.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Goto, E.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Grein, M. E.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

Hadfield, R. H.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[PubMed]

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area Superconducting Nanowire Single Photon detector arrays,” in 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE, 2014), pp. 1–4.

Harada, Y.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Haraguchi, T.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Hashimoto, Y.

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

Henrich, D.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

Hidaka, M.

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Hioe, W.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Hiraoka, Y.

Hofherr, M.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, “Demonstration of digital readout circuit for superconducting nanowire single photon detector,” Opt. Express 19(19), 18593–18601 (2011).
[PubMed]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Hosoya, M.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Ikuta, R.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Il’in, K.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

Ilin, K.

Imoto, N.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Jiang, X.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Jiang, Y.-F.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Kamikawai, R.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Kang, H.

H. Kang and S. B. Kaplan, “Current recycling and SFQ signal transfer in large scale RSFQ circuits,” IEEE Trans. Appl. Supercond. 13, 547–550 (2003).

Kaplan, S. B.

S. B. Kaplan, “Serial Biasing of 16 Modular Circuits at 50 Gb/s,” IEEE Trans. Appl. Supercond. 22, 1300103 (2012).

H. Kang and S. B. Kaplan, “Current recycling and SFQ signal transfer in large scale RSFQ circuits,” IEEE Trans. Appl. Supercond. 13, 547–550 (2003).

Kerman, A. J.

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Kinjo, M.

Koashi, M.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Kobayashi, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Koller, J. G.

J. G. Koller and W. C. Athas, “Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information,” in Workshop on Physics and Computation (IEEE, 1992), pp. 267–270.

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Krichel, N. J.

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Kuzmin, A.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Likharev, K.

K. Likharev, “Dynamics of some single flux quantum devices: I. Parametric quantron,” IEEE Trans. Magn. 13(1), 242–244 (1977).

Likharev, K. K.

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991).

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Lita, A. E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Liu, D.

Makise, K.

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
[PubMed]

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Mao, Y.-L.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Marsili, F.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Matsushima, T.

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

May, T.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

McCarthy, A.

McCaughan, A. N.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Meyer, H.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

Meyer, H.-G.

Miki, S.

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[PubMed]

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
[PubMed]

H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Molnar, R. J.

Monroy, E.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Nagasawa, S.

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

Nakane, H.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Nam, S. W.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Numata, H.

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

Ohkubo, M.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Ortlepp, T.

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, “Demonstration of digital readout circuit for superconducting nanowire single photon detector,” Opt. Express 19(19), 18593–18601 (2011).
[PubMed]

Ozawa, D.

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

Pan, J.-W.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Pizzone, A.

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area Superconducting Nanowire Single Photon detector arrays,” in 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE, 2014), pp. 1–4.

Rall, D.

Redaelli, L.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

Ren, X.

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Rosenberg, D.

Rosfjord, E. K. M.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Sano, K.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

Santavicca, D. F.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Semenov, V. K.

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991).

Shaw, M. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Shimoda, T.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

Siegel, M.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, “Demonstration of digital readout circuit for superconducting nanowire single photon detector,” Opt. Express 19(19), 18593–18601 (2011).
[PubMed]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

Suda, R.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Sun, Q.-C.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Suzuki, H.

N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).

Tahara, S.

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

Takeuchi, N.

N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

Tanner, M. G.

Terai, H.

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[PubMed]

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
[PubMed]

H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Toepfer, H.

Toussaint, J.

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Verma, V. B.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

Voronov, B.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Wada, Y.

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

Wang, H.-Z.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Wang, Z.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
[PubMed]

H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

Wuensch, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Yabuno, M.

Yamamoto, J.

Yamamoto, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Yamanashi, Y.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

Yamashita, T.

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[PubMed]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012).
[PubMed]

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Yang, J. K. W.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

Yasui, S.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Yoshikawa, N.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

You, L.-X.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Zen, N.

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

Zhang, Q.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Zhang, W.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Zhang, W.-J.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Zhang, Y.-B.

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Zhao, Q.-Y.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Zhu, D.

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

Zwick, T.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

Zwiller, V.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[PubMed]

Appl. Phys. Lett. (5)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 32603 (2017).

N. Takeuchi, H. Suzuki, and N. Yoshikawa, “Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver,” Appl. Phys. Lett. 110(20), 202601 (2017).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator,” Appl. Phys. Lett. 102, 52602 (2013).

IEEE Trans. Appl. Supercond. (9)

S. Nagasawa, Y. Hashimoto, H. Numata, and S. Tahara, “A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield,” IEEE Trans. Appl. Supercond. 5(2), 2447–2452 (1995).

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-Element Superconducting Nanowire Single-Photon Detector,” IEEE Trans. Appl. Supercond. 17(2), 279–284 (2007).

M. Hofherr, M. Arndt, K. Il’in, D. Henrich, M. Siegel, J. Toussaint, T. May, and H. Meyer, “Time-Tagged Multiplexing of Serially Biased Superconducting Nanowire Single-Photon Detectors,” IEEE Trans. Appl. Supercond. 23(3), 2501205 (2013).

M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single quantum flux device for Josephson supercomputer,” IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).

H. Terai, S. Miki, and Z. Wang, “Readout Electronics Using Single-Flux-Quantum Circuit Technology for Superconducting Single-Photon Detector Array,” IEEE Trans. Appl. Supercond. 19(3), 350–353 (2009).

K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991).

H. Kang and S. B. Kaplan, “Current recycling and SFQ signal transfer in large scale RSFQ circuits,” IEEE Trans. Appl. Supercond. 13, 547–550 (2003).

S. B. Kaplan, “Serial Biasing of 16 Modular Circuits at 50 Gb/s,” IEEE Trans. Appl. Supercond. 22, 1300103 (2012).

K. Sano, T. Shimoda, Y. Abe, Y. Yamanashi, N. Yoshikawa, N. Zen, and M. Ohkubo, “Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques,” IEEE Trans. Appl. Supercond. 27, 1 (2017).

IEEE Trans. Magn. (1)

K. Likharev, “Dynamics of some single flux quantum devices: I. Parametric quantron,” IEEE Trans. Magn. 13(1), 242–244 (1977).

J. Appl. Phys. (1)

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library adopting minimalist design,” J. Appl. Phys. 117(17), 173912 (2015).

Nat. Photonics (4)

Q.-Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H.-Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 1–6 (2017).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10(6), 441–444 (2016).

Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(6), 671–675 (2016).

Opt. Eng. (1)

E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and T. Yamashita, “Review of superconducting nanowire single-photon detector system design options and demonstrated performance,” Opt. Eng. 53(8), 81907 (2014).

Opt. Express (7)

T. Ortlepp, M. Hofherr, L. Fritzsch, S. Engert, K. Ilin, D. Rall, H. Toepfer, H.-G. Meyer, and M. Siegel, “Demonstration of digital readout circuit for superconducting nanowire single photon detector,” Opt. Express 19(19), 18593–18601 (2011).
[PubMed]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[PubMed]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811–7820 (2014).
[PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[PubMed]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25(6), 6796–6804 (2017).
[PubMed]

Opt. Lett. (1)

Phys. Rev. Appl. (1)

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Thermodynamic study of energy dissipation in adiabatic superconductor logic,” Phys. Rev. Appl. 4(3), 034007 (2015).

Proc. SPIE (1)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Supercond. Sci. Technol. (5)

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J.-M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Technol. 29(6), 1–10 (2016).

N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26(3), 35010 (2013).

N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of adiabatic superconductor logic,” Supercond. Sci. Technol. 28, 15003 (2015).

N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm −2 niobium fabrication process,” Supercond. Sci. Technol. 30(3), 35002 (2017).

Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, and T. Ortlepp, “Evaluation of current sensitivity of quantum flux parametron,” Supercond. Sci. Technol. 30(8), 84004 (2017).

Other (4)

T. Narama, Y. Yamanashi, N. Takeuchi, T. Ortlepp, and N. Yoshikawa, “Demonstration of 10k gate-scale adiabatic-quantum-flux-parametron circuits,” in The 15th International Superconductive Electronics Conference (ISEC 2015) (IEEE, 2015).

A. Casaburi, A. Pizzone, and R. H. Hadfield, “Large area Superconducting Nanowire Single Photon detector arrays,” in 2014 Fotonica AEIT Italian Conference on Photonics Technologies (IEEE, 2014), pp. 1–4.

J. G. Koller and W. C. Athas, “Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information,” in Workshop on Physics and Computation (IEEE, 1992), pp. 267–270.

H. Terai, K. Makise, T. Yamashita, S. Miki, and Z. Wang, “Design and testing of SFQ signal processor for 64-pixel SSPD array,” in The Applied Superconductivity Conference 2014 (ASC 2014) (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 AQFP readout interface for an SSPD. (a) Schematic. The comparator samples the current signal from an SSPD. The XOR gate compares the last sampling result with the second to last sampling result. The voltage driver amplifies the logic signals of AQFP into mV-range binary signals. (b) Timing chart. A pair of logic 1s is generated for each SSPD current pulse. (c) Micrograph.
Fig. 2
Fig. 2 Waveforms of the preliminary test. The AQFP readout interface is driven by the two sinusoidal bias currents with a phase separation of 90 degrees, Ix1 and Ix2. Independent of the pulse width of Iin, a pair of high voltage signals (logic 1s) is generated at Vout for each current pulse.
Fig. 3
Fig. 3 Measurement setup. The SSPD receives the attenuated laser pulse train and generates current pulses (Iin), which are directly sampled by the AQFP readout interface without amplification. Logic-1 pairs (Vout) are generated by the interface and their count rate is measured by the pulse counter via an amplification using LNAs.
Fig. 4
Fig. 4 Count rate, CRaqfp, as a function of the sampling frequency, fsample. CRaqfp increases with fsample and reaches the output rate of the pulse laser (106 cps) at fsample of approximately 100 MHz. The inset shows the observed waveform of the SSPD current pulse with a decay time of approximately 10 ns.
Fig. 5
Fig. 5 Count rates, CRaqfp and CRsspd, as a function of the number of photons per pulse, Nphoton. For the entire range of Nphoton, CRaqfp agreed well with CRsspd, which indicates that the AQFP readout interface correctly samples and digitize the SSPD current pulses.

Metrics