Abstract

We report the polarization-dependent electromagnetic response from a series of novel terahertz (THz) metasurfaces where asymmetry is introduced through the displacement of two adjacent metallic arms separated by a distance δ. For all polarization states, the symmetric metasurface exhibits a low quality (Q) factor fundamental dipole mode. By breaking the symmetry, we experimentally observe a secondary dipole-like mode with a Q factor nearly 9× higher than the fundamental resonance. As δ increases, the fundamental dipole mode f1 redshifts and the secondary mode f2 blueshifts creating a highly transmissive spectral window. Polarization-dependent measurements reveal a full suppression of f2 for all asymmetries at θ ≥ 60°. Furthermore, at δ ≥ 60 μm, we observe a polarization selective electromagnetic induced transparency (EIT) for the fundamental mode. This work paves the way for applications in filtering, sensing and slow-light devices common to other high Q factor THz metasurfaces with EIT-like response.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
    [Crossref]
  2. A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
    [Crossref] [PubMed]
  3. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  4. R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
    [Crossref] [PubMed]
  5. R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]
  6. R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  7. I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
    [Crossref]
  8. C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
    [Crossref]
  9. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  10. N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.
  11. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  12. S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
    [Crossref] [PubMed]
  13. X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
    [Crossref]
  14. Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
    [Crossref]
  15. Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
    [Crossref]
  16. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
    [Crossref]
  17. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
    [Crossref]
  18. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
    [Crossref]
  19. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
    [Crossref] [PubMed]
  20. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
    [Crossref]
  21. L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
    [Crossref]
  22. N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
    [Crossref]
  23. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
    [Crossref]
  24. S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
    [Crossref]
  25. M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High Q planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
    [Crossref]
  26. N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17) 20689–20697 (2017).
    [Crossref] [PubMed]
  27. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(5), 4988–4990 (2013).
    [Crossref] [PubMed]
  28. R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
    [Crossref]
  29. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
    [Crossref]
  30. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
    [Crossref]
  31. S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
    [Crossref] [PubMed]
  32. J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
    [Crossref]
  33. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
    [Crossref]
  34. CST Microwave Studio®, ( http://www.cst.com ).
  35. J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
    [Crossref] [PubMed]
  36. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
    [Crossref]
  37. H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
    [Crossref] [PubMed]
  38. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
    [Crossref]
  39. S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).
  40. A. D. Khan and M. Amin, “Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface,” IEEE Photon. Tech. Lett. 29(19), 1611–1614 (2017).
    [Crossref]
  41. M. Amin and A. D. Khan, “Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure,” J. Phys. Chem. C 119(37), 21633–21638 (2015).
    [Crossref]

2017 (10)

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17) 20689–20697 (2017).
[Crossref] [PubMed]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

A. D. Khan and M. Amin, “Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface,” IEEE Photon. Tech. Lett. 29(19), 1611–1614 (2017).
[Crossref]

2016 (7)

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
[Crossref]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High Q planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

2015 (7)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

M. Amin and A. D. Khan, “Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure,” J. Phys. Chem. C 119(37), 21633–21638 (2015).
[Crossref]

2014 (3)

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (3)

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(5), 4988–4990 (2013).
[Crossref] [PubMed]

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

2012 (2)

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

2011 (4)

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Abdeljawad, F.

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Al-Naib, I.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[Crossref] [PubMed]

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Al-Niab, I.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Amin, M.

A. D. Khan and M. Amin, “Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface,” IEEE Photon. Tech. Lett. 29(19), 1611–1614 (2017).
[Crossref]

M. Amin and A. D. Khan, “Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure,” J. Phys. Chem. C 119(37), 21633–21638 (2015).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Bendias, M.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Bettiol, A. A.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Born, N.

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Böttcher, J.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Brune, C.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Buhmann, H.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chaker, M.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Chiam, S. Y.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Choi, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Choi, M.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Cong, L.

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cui, H.-L.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Dayal, G.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

de Miollis, F.

Delprat, S.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Dignam, M. M.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Dresselhaus, M. S.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Du, C.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

E, Y.

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Fan, Y.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Feng, S.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Feng, T.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Foiles, S. M.

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Gu, C.

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Gu, J.

Guillet, J. P.

Gupta, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High Q planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

Han, J.

Hangyo, M.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

Hankiewicz, E.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Hattar, K.

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Ho, J. C.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Hui, A.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Hussey, N.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

In, C.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Jansen, C.

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Jiang, X.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Jost, A.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Jung, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Khan, A. D.

A. D. Khan and M. Amin, “Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface,” IEEE Photon. Tech. Lett. 29(19), 1611–1614 (2017).
[Crossref]

M. Amin and A. D. Khan, “Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure,” J. Phys. Chem. C 119(37), 21633–21638 (2015).
[Crossref]

Kim, J.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, S.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, T.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Kim, Y.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Koch, M.

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[Crossref] [PubMed]

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

Kumar, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

Lederer, F.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Lee, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Lee, S.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Li, J.

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Li, S.

Li, Y.

Liang, Z.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Liu, Z.

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Luo, Z.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Maan, J. C.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Mao, H.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Medlin, D. L.

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Min, B.

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Miyamaru, F.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

Molenkamp, L. W.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Moloney, J. V.

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Morandotti, R.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Mounaix, P.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(5), 4988–4990 (2013).
[Crossref] [PubMed]

Ouyang, C.

Ozaki, T.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Peng, B.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Peng, W.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Peng, Z.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Qiu, K.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Rocheleau, D.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Rockstuhl, C.

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Savinov, V.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

Scheller, M.

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Shi, W.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Singh, R.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High Q planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[Crossref] [PubMed]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

Soni, A.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Srivastava, Y. K.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

Takano, K.

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

Tan, S.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

Tang, C.

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Tian, Z.

Ung, B.

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Wang, B.

Wang, C.

Wang, H.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Wang, J.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Wang, L.

Wang, S.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Wang, Y.

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Wei, D.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Wiedmann, S.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

Xia, L.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Xia, X.

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Xiong, Qihua

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Xu, N.

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Xu, Q.

Yahiaoui, R.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(5), 4988–4990 (2013).
[Crossref] [PubMed]

Yan, F.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

Yan, S.

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

Yang, S.

S. Yang, C. Tang, Z. Liu, B. Wang, C. Wang, J. Li, L. Wang, and C. Gu, “Simultaneous excitation of extremely high-Q-factor trapped and octopolar modes in terahertz metamaterials,” Opt. Express 25(14), 15938–15946 (2017).
[Crossref] [PubMed]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Yang, Y.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yin, X.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yip, S.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Zeitler, U.

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhang, J.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Zhang, N.

Zhang, W.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17) 20689–20697 (2017).
[Crossref] [PubMed]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, M. Koch, and W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010).
[Crossref] [PubMed]

Zhang, X.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17) 20689–20697 (2017).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Zhao, H.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Zhao, Q.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhao, Y.

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Zheludev, N. I.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zheng, X.

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Zhou, J.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zimmerman, J.A.

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Acta Mater. (1)

D. L. Medlin, K. Hattar, J.A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).
[Crossref]

Adv. Mater. (3)

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices,” Adv. Mater. 19(32), 1605881 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref] [PubMed]

S. Lee, S. Kim, T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High Q planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, H. N. S. Krishnamoorthy, and R. Singh, “Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces,” Adv. Opt. Mater. 4(11), 1875–1881 (2016).
[Crossref]

Adv. Optical Mater. (1)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Optical Mater. 3(11), 1537–1543 (2015).
[Crossref]

Appl. Phys. Lett. (13)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

R. Singh, I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

I. Al-Niab, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

C. Jansen, I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensative terahertz sensing with high Q-factor Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102(12), 121101 (2013).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonances in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

IEEE Photon. Tech. Lett. (2)

S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.-L. Cui, and C. Du, “Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial,” IEEE Photon. Tech. Lett. 9(28), 986–989 (2016).

A. D. Khan and M. Amin, “Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface,” IEEE Photon. Tech. Lett. 29(19), 1611–1614 (2017).
[Crossref]

J. Appl. Phys. (1)

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118(8), 083101 (2015).
[Crossref]

J. Opt. (1)

R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16(9), 094014 (2014).
[Crossref]

J. Phys. Chem. C (1)

M. Amin and A. D. Khan, “Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure,” J. Phys. Chem. C 119(37), 21633–21638 (2015).
[Crossref]

J. Phys. D (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly flexible polyimide substrates,” J. Phys. D 41(23), 232004 (2008).
[Crossref]

Nano Lett. (1)

J. Zhang, Z. Peng, A. Soni, Y. Zhao, B. Peng, J. Wang, M. S. Dresselhaus, and Qihua Xiong, “Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets,” Nano Lett.,  11(6), 2407–2414 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mat. Express. (1)

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mat. Express. 7(6), 1950–1961 (2017).
[Crossref]

Phys. Rev. B (2)

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94, 161103 (2016).
[Crossref]

S. Yang, Z. Liu, X. Xia, Y. E, C. Tang, Y. Wang, and C. Gu, “Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials,” Phys. Rev. B 93(23), 235407 (2016).
[Crossref]

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Jost, M. Bendias, J. Böttcher, E. Hankiewicz, C. Brune, H. Buhmann, L. W. Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, “Electron-hole asymmetry of the topological surface states in strained HgTe,” Proc. Natl. Acad. Sci. U.S.A. 114(13), 3381–3386 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4, 5217 (2014).
[Crossref] [PubMed]

Other (2)

CST Microwave Studio®, ( http://www.cst.com ).

N. Born, I. Al-Naib, M. Scheller, C. Jansen, J. V. Moloney, and M. Koch, “Trapped eigen modes in terahertz asymmetric metamolecules,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Geometrical description of the CSRR unit cell indicating the asymmetry parameter, and microscope images of CSRR (b) δ = 0 μm, (c) δ = 20 μm, (d) δ = 40 μm, (e) δ = 60 μm, and (f) δ = 80 μm.
Fig. 2
Fig. 2 Measured (solid) and simulated (dashed) transmission spectra under Ey polarization for (a) CSRR00, (b) CSRR20, (c) CSRR40, (d) CSRR60, and (e) CSRR80. Experimentally measured resonant frequency (f), (g) Q factor and modulation depth of f1 and (h) Q factor and modulation depth of f2 as a function of δ. The inset of (h) details the Figure of Merit as a function of asymmetry.
Fig. 3
Fig. 3 CSRR00 (a) experimental and simulation transmission spectra and (b) surface current (white arrows) and magnetic field distribution ∼ 0.65 THz. CSRR80 (c) experimental and simulation transmission spectra, surface currents (white arrows) and magnetic field distributions at (d) f1 ∼ 0.58 THz and (e) f2 ∼ 0.8 THz.
Fig. 4
Fig. 4 Evolution of the measured transmission spectra for different values of the shift δ = 20, 40, 60 and 80 μm, respectively and under different polar angles θ varying from 0° to 90°.
Fig. 5
Fig. 5 Measured (solid) and simulated (dashed) transmission spectra excited by cross polarized THz radiation for (a) CSRR00, (b) CSRR60, and (c) CSRR80 devices. (d) Simulated group delays associated with the CSRR80 (red solid line) that exhibit EIT at 0.657 THz and the reference kapton film (gold dashed line), respectively. (e)–(g) Magnetic field distributions at fl, ft and fh, respectively for the CSRR80. The corresponding induced surface currents are indicated by white arrows.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( f ) = A [ Λ + ( f f 0 ) / Δ f ] 2 1 + ( f f 0 ) 2

Metrics