Abstract

Micro-Fourier-transform infrared (FTIR) spectroscopy is a widespread technique that enables broadband measurements of infrared active molecular vibrations at high sensitivity. SiC globars are often applied as light sources in tabletop systems, typically covering a spectral range from about 1 to 20 µm (10 000 – 500 cm−1) in FTIR spectrometers. However, measuring sample areas below 40x40 µm2 requires very long integration times due to their inherently low brilliance. This hampers the detection of ultrasmall samples, such as minute amounts of molecules or single nanoparticles. In this publication we extend the current limits of FTIR spectroscopy in terms of measurable sample areas, detection limit and speed by utilizing a broadband, tabletop laser system with MHz repetition rate and femtosecond pulse duration that covers the spectral region between 1250 – 7520 cm−1 (1.33 – 8 µm). We demonstrate mapping of a 150x150 µm2 sample of 100 nm thick molecule layers at 1430 cm−1 (7 µm) with 10x10 µm2 spatial resolution and a scan speed of 3.5 µm/sec. Compared to a similar globar measurement an order of magnitude lower noise is achieved, due to an excellent long-term wavelength and power stability, as well as an orders of magnitude higher brilliance.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen
Opt. Express 23(9) 11105-11113 (2015)

Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm

Reza Salem, Zack Jiang, Dongfeng Liu, Robert Pafchek, David Gardner, Paul Foy, Mohammed Saad, Doug Jenkins, Alex Cable, and Peter Fendel
Opt. Express 23(24) 30592-30602 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949).
    [Crossref] [PubMed]
  2. P. Connes, “Astronomical Fourier Spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
    [Crossref]
  3. P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
    [Crossref]
  4. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrosocpy (Wiley, 2007), Chap. 14.
  5. R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
    [Crossref]
  6. C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
    [Crossref] [PubMed]
  7. A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta 1767(9), 1073–1101 (2007).
    [Crossref] [PubMed]
  8. C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
    [Crossref]
  9. M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
    [Crossref]
  10. T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
    [Crossref] [PubMed]
  11. I. W. Levin and R. Bhargava, “Fourier Transform Infrared Vibrational Spectroscopic Imaging: Integrating Microscopy and Molecular Recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
    [Crossref] [PubMed]
  12. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [Crossref]
  13. A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
    [Crossref] [PubMed]
  14. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [Crossref]
  15. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  16. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
    [Crossref] [PubMed]
  17. S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2,” Opt. Lett. 40(7), 1398–1401 (2015).
    [Crossref] [PubMed]
  18. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26(5), 304–306 (2001).
    [Crossref] [PubMed]
  19. T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons,” Opt. Express 22(8), 9567–9573 (2014).
    [Crossref] [PubMed]
  20. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
    [Crossref] [PubMed]
  21. J. Krauth, T. Steinle, B. Liu, M. Floess, H. Linnenbank, A. Steinmann, and H. Giessen, “Low drift cw-seeded high-repetition-rate optical parametric amplifier for fingerprint coherent Raman spectroscopy,” Opt. Express 24(19), 22296–22302 (2016).
    [Crossref] [PubMed]
  22. F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
    [Crossref] [PubMed]
  23. T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm,” Opt. Lett. 41(21), 4863–4866 (2016).
    [Crossref] [PubMed]
  24. L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
    [Crossref] [PubMed]
  25. T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
    [Crossref]
  26. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
    [Crossref] [PubMed]
  27. S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
    [Crossref] [PubMed]
  28. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
    [Crossref] [PubMed]
  29. S. Bensmann, F. Gaußmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
    [Crossref] [PubMed]

2017 (2)

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (5)

2014 (3)

2011 (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

2010 (3)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

2009 (3)

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
[Crossref] [PubMed]

2007 (1)

A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta 1767(9), 1073–1101 (2007).
[Crossref] [PubMed]

2006 (1)

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

2005 (1)

I. W. Levin and R. Bhargava, “Fourier Transform Infrared Vibrational Spectroscopic Imaging: Integrating Microscopy and Molecular Recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[Crossref] [PubMed]

2001 (1)

1970 (1)

P. Connes, “Astronomical Fourier Spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

1960 (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

1949 (1)

Aizpurua, J.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Amarie, S.

Aus der Au, J.

Barth, A.

A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta 1767(9), 1073–1101 (2007).
[Crossref] [PubMed]

Bensmann, S.

Bhargava, R.

I. W. Levin and R. Bhargava, “Fourier Transform Infrared Vibrational Spectroscopic Imaging: Integrating Microscopy and Molecular Recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[Crossref] [PubMed]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Cestelli-Guidi, M.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

Chaitanya Kumar, S.

Coddington, I.

Connes, P.

P. Connes, “Astronomical Fourier Spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Deleris, G.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

Déléris, G.

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Dumas, P.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

Ebrahim-Zadeh, M.

Fellgett, P. B.

Floess, M.

Ganz, T.

Gasper, R.

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

Gaußmann, F.

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

J. Krauth, T. Steinle, B. Liu, M. Floess, H. Linnenbank, A. Steinmann, and H. Giessen, “Low drift cw-seeded high-repetition-rate optical parametric amplifier for fingerprint coherent Raman spectroscopy,” Opt. Express 24(19), 22296–22302 (2016).
[Crossref] [PubMed]

T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm,” Opt. Lett. 41(21), 4863–4866 (2016).
[Crossref] [PubMed]

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
[Crossref] [PubMed]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref] [PubMed]

S. Chaitanya Kumar, J. Krauth, A. Steinmann, K. T. Zawilski, P. G. Schunemann, H. Giessen, and M. Ebrahim-Zadeh, “High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2,” Opt. Lett. 40(7), 1398–1401 (2015).
[Crossref] [PubMed]

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons,” Opt. Express 22(8), 9567–9573 (2014).
[Crossref] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Goormaghtigh, E.

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Hanna, D. C.

Hasenkampf, A.

Hegenbarth, R.

Hentschel, M.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

Hillenbrand, R.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Jacquinot, P.

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Janzen, C.

Jungbluth, B.

Keilmann, F.

Keller, U.

Kiss, R.

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

Klauk, H.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Krauth, J.

Kröger, N.

Kühner, L.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

Lerch, P.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

Levin, I. W.

I. W. Levin and R. Bhargava, “Fourier Transform Infrared Vibrational Spectroscopic Imaging: Integrating Microscopy and Molecular Recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[Crossref] [PubMed]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Lewin, M.

Linden, S.

Linnenbank, H.

Liu, B.

Maidment, L.

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Marcelli, A.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

Martin, M.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Mijatovic, T.

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

Mörz, F.

Neubrech, F.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref] [PubMed]

Neuman, T.

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Newbury, N.

Nyga, S.

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Paschotta, R.

Petibois, C.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Petrich, W.

Piccinini, M.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Reid, D. T.

Ross, G. W.

Schade, U.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Schönhals, A.

Schunemann, P. G.

Smith, P. G.

Steinle, T.

Steinmann, A.

Südmeyer, T.

Swann, W.

Taubner, T.

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Vogt, J.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Wüppen, J.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Yin, X.

Zawilski, K. T.

Zschieschang, U.

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

ACS Sens. (1)

L. Kühner, M. Hentschel, U. Zschieschang, H. Klauk, J. Vogt, C. Huck, H. Giessen, and F. Neubrech, “Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging,” ACS Sens. 2(5), 655–662 (2017).
[Crossref] [PubMed]

Annu. Rev. Astron. Astrophys. (1)

P. Connes, “Astronomical Fourier Spectroscopy,” Annu. Rev. Astron. Astrophys. 8(1), 209–230 (1970).
[Crossref]

Annu. Rev. Phys. Chem. (1)

I. W. Levin and R. Bhargava, “Fourier Transform Infrared Vibrational Spectroscopic Imaging: Integrating Microscopy and Molecular Recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

A. Barth, “Infrared spectroscopy of proteins,” Biochim. Biophys. Acta 1767(9), 1073–1101 (2007).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Chem. Rev. (1)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

T. Neuman, C. Huck, J. Vogt, F. Neubrech, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas,” J. Phys. Chem. C 119(47), 26652–26662 (2015).
[Crossref]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nat. Photonics 3(4), 179 (2009).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[Crossref]

Opt. Express (8)

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons,” Opt. Express 22(8), 9567–9573 (2014).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
[Crossref] [PubMed]

J. Krauth, T. Steinle, B. Liu, M. Floess, H. Linnenbank, A. Steinmann, and H. Giessen, “Low drift cw-seeded high-repetition-rate optical parametric amplifier for fingerprint coherent Raman spectroscopy,” Opt. Express 24(19), 22296–22302 (2016).
[Crossref] [PubMed]

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
[Crossref] [PubMed]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref] [PubMed]

S. Bensmann, F. Gaußmann, M. Lewin, J. Wüppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22(19), 22369–22381 (2014).
[Crossref] [PubMed]

S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Rep. Prog. Phys. (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Spectroscopy (Springf.) (1)

R. Gasper, T. Mijatovic, R. Kiss, and E. Goormaghtigh, “FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs,” Spectroscopy (Springf.) 24(1-2), 45–49 (2010).
[Crossref]

Trends Analyt. Chem. (1)

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Analyt. Chem. 29(6), 453–463 (2010).
[Crossref]

Trends Biotechnol. (1)

C. Petibois and G. Déléris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24(10), 455–462 (2006).
[Crossref] [PubMed]

Other (1)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrosocpy (Wiley, 2007), Chap. 14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. Mid-IR radiation is generated in a 2-mm-long AgGaSe2 crystal by mixing signal and idler beams of a post-amplified fiber-feedback optical parametric oscillator (ffOPO) system, as presented in [22]. In contrast to [22], a commercial Yb solid-state laser with much shorter pulses and broader bandwidth is used for pumping, which provides 98 fs pulses at 73 MHz repetition rate and 1.048 µm central wavelength. The DFG signal is coupled into a FTIR spectrometer and an attached microscope. A part of the microscope image is extracted by a quadratic aperture of area 10x10 µm2 and detected by a MCT detector. Mid-IR molecular absorptions of 100 nm thick C60 and Cu-Phthalocyanine films are investigated. For all measurements a 36x condenser and objective are used.
Fig. 2
Fig. 2 Normalized spectra and output power over the DFG signal tuning range, spanning from 4.65 to 8 µm. The spectral bandwidth (FWHM) reaches at least 250 nm over the whole tuning range. Up to 2.65 mW output power can be generated at 5.5 µm wavelength, while 0.2 mW are available at the edges of the tuning range. Between 5 and 7 µm wavelength, spectral features due to water absorption are visible on the spectral traces.
Fig. 3
Fig. 3 a) Characterization spectra of the Cu-Phthalocyanine and C60 vibrations that are going to be investigated using the FTIR setup. These characterization spectra have been measured using the globar, with an aperture size of 100x100 µm2 and by averaging 200 spectra at 4 cm−1 spectral resolution. The grey spectrum depicts the laser spectrum that is used during the experiments. Due to a FWHM of the laser spectrum of 59 cm−1 (289 nm) both vibrations can be measured without adjusting the laser wavelength. b) Microscope image of the scanned 150x150 µm2 sample area that is investigated with the laser. c-e) Evaluated FTIR maps measured with the laser system. The strength of the molecular absorption of the respective vibration is depicted as a function of the position. The area is scanned with 10x10 µm2 resolution, 4 cm−1 spectral resolution, averaging 15 spectra per pixel, which corresponds to a pixel measurement time of 143 sec. Thus, both molecular features are well distinguishable. To visualize the overlap with the sample image (b), the color code of the maps matches the microscope image. Therefore the absorption of C60 is shown in red, whereas CuPc appears blue. Good overlap between the measured maps and the microscope image (b) is visible.
Fig. 4
Fig. 4 Comparison between FTIR maps conducted using the globar (a) and the laser (b) as light sources. Whereas no molecular features can be resolved using the globar, high chemical contrast is achieved with the laser, even at a 5 times shorter integration time given in seconds per pixel (sec/px). Different scales between the globar and laser maps are due to the higher noise level of the globar.
Fig. 5
Fig. 5 a) Comparison of laser and globar noise in the frequency range from 1400 to 1460 cm−1, which corresponds to the FWHM of the laser spectrum. About one order of magnitude higher rms noise is present when using the globar during a period of 400 min. Both measurements have been extracted from the mappings depicted in Fig. 3 by comparing subsequent reference spectra measured on the CaF2 substrate. Thus, the noise level gives a lower limit of detectable molecular absorptions without averaging multiple spectra. b) Comparison of FTIR signal spectra using the globar and the laser, extracted from randomly chosen pixels (px 25 and px 37) of the maps that are displayed in Fig. 3. The globar noise substantially exceeds the molecular absorptions, as expected from the noise level, as demonstrated in a). Even at short measurement times of 29 sec, both molecular absorptions remain distinctly visible using the laser. No baseline corrections have been applied on these spectra.

Metrics