Abstract

We present a detailed comparison of applying three advanced modulation formats including pulse amplitude modulation-8 (PAM-8), carrier-less amplitude and phase modulation-64 QAM (CAP-64), and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S OFDM) with a bandwidth-limited direct-detection receiver for 100 Gb/s/λ optical transmission systems. These modulation formats are all experimentally demonstrated with corresponding digital signal processing (DSP) algorithms. The comparison is carried out to evaluate the performance of each modulation format in terms of nonlinear equalization, received optical power and optical signal to noise ratio (OSNR). Our experimental results show that only 112 Gbit/s DFT-S OFDM is successfully achieved over 50 km of SSMF under the hard decision-forward error correction (HD-FEC) threshold of 3.8 × 10−3.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems

Kangping Zhong, Xian Zhou, Tao Gui, Li Tao, Yuliang Gao, Wei Chen, Jiangwei Man, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 23(2) 1176-1189 (2015)

OFDM and PAM comparison using a high baudrate low resolution IM/DD interface for 400G Ethernet access

Nuno Sequeira André, Hadrien Louchet, Volker Filsinger, Erik Hansen, and André Richter
Opt. Express 24(11) 11926-11931 (2016)

Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser

Fan Li, Jianjun Yu, Yuan Fang, Ze Dong, Xinying Li, and Lin Chen
Opt. Express 22(7) 8742-8748 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks – an operator’s view,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 53–56.
  2. H. Rohde, E. Gottwald, A. Teixeira, J. D. Reis, A. Shahpari, K. Pulverer, and J. S. Wey, “Coherent ultra dense WDM technology for next generation optical metro and access networks,” J. Lightwave Technol. 32(10), 2041–2052 (2014).
  3. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [PubMed]
  4. R. Rodes, M. Müeller, B. Li, J. Estaran, J. B. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M. C. Amann, and I. T. Monroy, “High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31(4), 689–695 (2013).
  5. M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.
  6. Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).
  7. J. Estaran, M. Iglesias, D. Zibar, X. Xu, and I. Tafur, “First experimental demonstration of coherent CAP for 300-Gb/s metropolitan optical networks,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2014), paper Th3K.3.
  8. J. Zhang, X. Li, Y. Xia, Y. Chen, J. Yu, X. Chen, and J. Xiao, “60-Gb/s CAP-64QAM transmission using DML with direct detection and digital equalization,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2014), paper W1F.3.
  9. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2009), paper OMV.1.
  10. X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).
  11. C. Li, H. Li, Q. Yang, M. Luo, X. Zhang, R. Hu, Z. Li, W. Li, and S. Yu, “Single photodiode direct detection system of 100-Gb/s OFDM/OQAM-64QAM over 80-km SSMF within a 50-GHz optical grid,” Opt. Express 22(19), 22490–22497 (2014).
    [PubMed]
  12. F. Li, Z. Cao, X. Li, and J. Yu, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proceedings of the Optical Fiber Communications Conference (OFC) (OFC) (2016), paper W4J.2.
  13. J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.
  14. J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).
  15. Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

2017 (1)

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

2016 (2)

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

2015 (2)

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[PubMed]

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

2014 (2)

2013 (1)

Amann, M. C.

Bigo, S.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Chang, G. K.

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

Chen, W.

Chi, N.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

Davey, R. P.

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks – an operator’s view,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 53–56.

Dupuy, J-Y.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Duval, B.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Estaran, J.

Gao, Y.

Ghazisaeidi, A.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Gottwald, E.

Gruendl, T.

Gui, T.

Hu, R.

Huang, C.

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

Jennevé, P.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Jensen, J. B.

Jorge, F.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Larsen, K. J.

Lau, A. P. T.

Li, B.

Li, C.

Li, H.

Li, W.

Li, Z.

Liu, G. N.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Lonczykowska, A.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Lu, C.

Luo, M.

Man, J.

Mardoyan, H.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Mestre, M. A.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Monroy, I. T.

Müeller, M.

Neumeyr, C.

Ortsiefer, M.

Payne, D. B.

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks – an operator’s view,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 53–56.

Pulverer, K.

Reis, J. D.

Renaudier, J.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Rios- Müller, R.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

Rodes, R.

Rohde, H.

Rosskopf, J.

Shahpari, A.

Shi, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Shu, C.

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

Tao, L.

Teixeira, A.

Tsang, H. K.

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

Wang, Y.

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

Wey, J. S.

Wu, X.

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

Xu, K.

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

Xu, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Yang, Q.

Yu, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

Yu, S.

Zeng, L.

Zhang, J.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Zhang, L.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Zhang, Q.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Zhang, S.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Zhang, X.

Zhong, K.

Zhou, E.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Zhou, J.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

Zhou, X.

Zhou, Y.

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

Zuo, T.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

IEEE Photon. J. (2)

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photon. J. 7(4), 1–5 (2015).

Y. Wang, J. Yu, and N. Chi, “Demonstration of 4 times 128-Gb/s DFT-S OFDM Signal Transmission over 320-km SMF With IM/DD,” IEEE Photon. J. 8(2), 1–9 (2016).

IEEE Photon. Technol. Lett. (2)

J. Shi, Y. Zhou, Y. Xu, J. Zhang, J. Yu, and N. Chi, “200-Gbps DFT-S OFDM Using DD-MZM- Based Twin-SSB with a MIMO-Volterra Equalizer,” IEEE Photon. Technol. Lett. 29(4), 1183–1186 (2017).

X. Wu, C. Huang, K. Xu, C. Shu, and H. K. Tsang, “128-Gb/s line rate OFDM signal modulation using an integrated silicon microring modulator,” IEEE Photon. Technol. Lett. 28(19), 2058–2061 (2016).

J. Lightwave Technol. (2)

Opt. Express (2)

Other (7)

F. Li, Z. Cao, X. Li, and J. Yu, “Demonstration of four channel CWDM 560 Gbit/s 128QAM-OFDM for optical inter-connection,” in Proceedings of the Optical Fiber Communications Conference (OFC) (OFC) (2016), paper W4J.2.

J. Zhou, L. Zhang, T. Zuo, Q. Zhang, S. Zhang, E. Zhou, and G. N. Liu, “Transmission of 100-Gb/s DSB-DMT over 80-km SMF Using 10-G class TTA and Direct-Detection,” in European Conference and Exhibition on Optical Communications (ECOC) (2016), pp. 1–3.

R. P. Davey and D. B. Payne, “The future of optical transmission in access and metro networks – an operator’s view,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 53–56.

M. A. Mestre, H. Mardoyan, A. Lonczykowska, R. Rios- Müller, J. Renaudier, F. Jorge, B. Duval, J-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in European Conference and Exhibition on Optical Communications (ECOC) (2015), pp. 1–3.

J. Estaran, M. Iglesias, D. Zibar, X. Xu, and I. Tafur, “First experimental demonstration of coherent CAP for 300-Gb/s metropolitan optical networks,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2014), paper Th3K.3.

J. Zhang, X. Li, Y. Xia, Y. Chen, J. Yu, X. Chen, and J. Xiao, “60-Gb/s CAP-64QAM transmission using DML with direct detection and digital equalization,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2014), paper W1F.3.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM transmission in metro/access networks,” in Proceedings of the Optical Fiber Communications Conference (OFC) (2009), paper OMV.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Block diagrams of PAM-8 system.
Fig. 2
Fig. 2 Block diagrams of CAP-64 system.
Fig. 3
Fig. 3 Block diagrams of DFT-S OFDM system.
Fig. 4
Fig. 4 Experimental Setup of optical transmission with direct detection.
Fig. 5
Fig. 5 The end-to-end frequency response of the optical channel.
Fig. 6
Fig. 6 (a) BER versus Received Optical Power of PAM, CAP and DFT-S OFDM with/without nonlinear equalization; (b) BER versus Taps of Volterra algorithm for PAM, CAP and DFT-S OFDM in 40 km case.
Fig. 7
Fig. 7 Diagram of PAM-8 without NE in 2 dBm of received optical power.
Fig. 8
Fig. 8 BER versus Received Optical Power of PAM, CAP and DFT-S OFDM in the BTB, 10 km, 25 km and 40 km cases.
Fig. 9
Fig. 9 (a) CCDF versus PAPR of DFT-S, PAM and CAP with and without CD pre-compensation; Frequency spectrums of (b) DFT-S OFDM, (c) PAM and (d) CAP.
Fig. 10
Fig. 10 BER versus OSNR of PAM, CAP and DFT-S OFDM in the BTB, 10 km, 25 km and 40 km cases.
Fig. 11
Fig. 11 BER versus Transmission Distance of PAM, CAP and DFT-S OFDM; (i) Constellation of DFT-S OFDM 64QAM, (ii) Diagram of PAM-8 and (iii) Constellation of CAP-64.

Tables (1)

Tables Icon

Table 1 Experiment Parameters

Metrics