Abstract

Zinc gallate (ZnGa2O4; ZGO) thin films were employed as the p-type transparent contact layer in deep-ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The transmittance of 200-nm-thick ZGO in deep-ultraviolet wavelength (280 nm) was as high as 92.3%. Two different ohmic contact structures, a dot-LED (D-LED; ZGO/dot-ITO/LED) and whole-LED (W-LED; ZGO/ITO/LED), exhibited improved light output power and current spreading compared to a conventional ITO-LED (C-LED). At an injection current of 20 mA, the D-LED and W-LED exhibited 33.7% and 12.3% enhancements in light output power, respectively, compared to the C-LED. The enhanced light output power of the D-LED can be attributed to an improvement in current spreading and enhanced light-extracting efficiency achieved by introducing ZGO/dot-ITO.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Review of encapsulation materials for AlGaN-based deep-ultraviolet light-emitting diodes

Yosuke Nagasawa and Akira Hirano
Photon. Res. 7(8) B55-B65 (2019)

Near ultraviolet InGaN/AlGaN-based light-emitting diodes with highly reflective tin-doped indium oxide/Al-based reflectors

Chang-Hoon Choi, Jaecheon Han, Jae-Seong Park, and Tae-Yeon Seong
Opt. Express 21(22) 26774-26779 (2013)

Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: a comparison to InGaN-based visible flip-chip light-emitting diodes

Keon Hwa Lee, Hyun Jung Park, Seung Hwan Kim, Mojtaba Asadirad, Yong-Tae Moon, Joon Seop Kwak, and Jae-Hyun Ryou
Opt. Express 23(16) 20340-20349 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
    [Crossref]
  2. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
    [Crossref]
  3. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
    [Crossref]
  4. Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
    [Crossref]
  5. S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express 19(17), 16244–16251 (2011).
    [Crossref] [PubMed]
  6. T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
    [Crossref]
  7. H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
    [Crossref]
  8. H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
    [Crossref] [PubMed]
  9. V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
    [Crossref]
  10. M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
    [Crossref]
  11. S. H. Yang, “Electrophoretic prepared ZnGa2O4 phosphor film for FED,” J. Electrochem. Soc. 150(10), H250–H253 (2003).
    [Crossref]
  12. S. H. Wu and H. C. Chang, “Preparation and characterization of nanosized ZnGa2O4 phosphors,” J. Electrochem. Soc. 151(7), H159–H163 (2004).
    [Crossref]
  13. S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
    [Crossref] [PubMed]
  14. L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
    [Crossref] [PubMed]
  15. S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
    [Crossref]
  16. Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
    [Crossref]
  17. R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).
  18. H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
    [Crossref]
  19. W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
    [Crossref]
  20. N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
    [Crossref]

2017 (2)

Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
[Crossref]

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

2016 (1)

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

2014 (3)

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

2013 (2)

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

2012 (1)

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

2011 (2)

Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
[Crossref]

S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express 19(17), 16244–16251 (2011).
[Crossref] [PubMed]

2009 (1)

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

2008 (1)

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

2006 (1)

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

2005 (1)

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

2004 (1)

S. H. Wu and H. C. Chang, “Preparation and characterization of nanosized ZnGa2O4 phosphors,” J. Electrochem. Soc. 151(7), H159–H163 (2004).
[Crossref]

2003 (2)

S. H. Yang, “Electrophoretic prepared ZnGa2O4 phosphor film for FED,” J. Electrochem. Soc. 150(10), H250–H253 (2003).
[Crossref]

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

2000 (1)

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

Ahn, J. P.

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

Bae, S. Y.

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

Bilenko, Y.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Chang, H. C.

S. H. Wu and H. C. Chang, “Preparation and characterization of nanosized ZnGa2O4 phosphors,” J. Electrochem. Soc. 151(7), H159–H163 (2004).
[Crossref]

Chen, C. S.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Chen, L.

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

Choi, H. W.

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Cong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Dobrinsky, A.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Dong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Fan, S.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Fu, Y. C.

Fujikawa, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Garrett, G.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Gaska, R.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Geng, C.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Hiramatsu, H.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

Hirano, M.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

Hirayama, H.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Hong, C. H.

Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
[Crossref]

Hong, S. H.

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Hoon Seo, T.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Horng, R. H.

Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
[Crossref]

S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express 19(17), 16244–16251 (2011).
[Crossref] [PubMed]

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Hosono, H.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

Hu, X.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Huang, C. Y.

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Huang, S. C.

Huang, S. Y.

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

Jiang, D.

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

Jiang, H. X.

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

Jiang, M. C.

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

Jo, Y. J.

Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
[Crossref]

Jong Kim, M.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Juang, T. K.

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Jung, H.

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

Kamata, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Kamiya, T.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

Kang, J. W.

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Kang, L. J.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Kawazoe, Y.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Kim, H.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Kim, S. J.

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Kwak, J. S.

Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
[Crossref]

Kyoung Kim, B.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Lee, C.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Lee, H. J.

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Lee, J.

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

Li, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Lin, J. Y.

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

Liu, M.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Liu, P. L.

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Liu, R. J.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Liu, S. P.

Liu, X.

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

Lunev, A.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Maeda, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Man, B. Y.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Mizuseki, H.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Moe, C.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Nakarmi, M. L.

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

Nepal, N.

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

Nomura, K.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

Ohta, H.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

Orita, M.

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

Ou, S. L.

S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express 19(17), 16244–16251 (2011).
[Crossref] [PubMed]

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Park, J.

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

Park, S. J.

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Park, S. Y.

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Park, Y. S.

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Qin, Z.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Qiu, G.

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

Shatalov, M.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Shen, Y. S.

Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
[Crossref]

Shin, G. U.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Shur, M.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Song, S. H.

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Suh, E.-K.

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

Sun, L.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Sun, W.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Tian, Y.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Toyoda, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Ueda, K.

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

Wang, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wang, V.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Wang, W. K.

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
[Crossref]

Wei, J.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Wei, T.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wraback, M.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Wu, S. H.

S. H. Wu and H. C. Chang, “Preparation and characterization of nanosized ZnGa2O4 phosphors,” J. Electrochem. Soc. 151(7), H159–H163 (2004).
[Crossref]

Wuu, D. S.

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

S. L. Ou, D. S. Wuu, S. P. Liu, Y. C. Fu, S. C. Huang, and R. H. Horng, “Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications,” Opt. Express 19(17), 16244–16251 (2011).
[Crossref] [PubMed]

Xi, H. Z.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Xiao, W.

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Yan, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yan, Q.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yang, J.

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Yang, S. H.

S. H. Yang, “Electrophoretic prepared ZnGa2O4 phosphor film for FED,” J. Electrochem. Soc. 150(10), H250–H253 (2003).
[Crossref]

Yang, S. Y.

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Yoon, H. H.

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Zeng, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Zhang, Y.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. J. Lee, J. W. Kang, S. H. Hong, S. H. Song, and S. J. Park, “MgxZn1–xO/Ag/MgxZn1–xO M\multilayers as high-performance transparent conductive electrodes,” ACS Appl. Mater. Interfaces 8(3), 1565–1570 (2016).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5(8), 082101 (2012).
[Crossref]

Appl. Phys. Lett. (4)

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

T. Hoon Seo, B. Kyoung Kim, G. U. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103(5), 051105 (2013).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77(25), 4166–4168 (2000).
[Crossref]

N. Nepal, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Photoluminescence studies of impurity transitions in AlGaN alloys,” Appl. Phys. Lett. 89(9), 092107 (2006).
[Crossref]

Appl. Sci. (1)

W. K. Wang, S. Y. Huang, M. C. Jiang, and D. S. Wuu, “Optoelectronic properties and structural characterization of GaN thick films on different substrates through pulsed laser deposition,” Appl. Sci. 7(1), 87 (2017).
[Crossref]

ChemPhysChem (1)

L. Chen, D. Jiang, X. Liu, and G. Qiu, “ZnGa2O4 Nanorod Arrays Decorated with Ag Nanoparticles as Surface-Enhanced Raman-Scattering Substrates for Melamine Detection,” ChemPhysChem 15(8), 1624–1631 (2014).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

Y. J. Jo, C. H. Hong, and J. S. Kwak, “Improved electrical and optical properties of ITO thin films by using electron beam irradiation and their application to UV-LED as highly transparent p-type electrodes,” Curr. Appl. Phys. 11(4), S143–S146 (2011).
[Crossref]

IEEE. J. Electron. Devices Soc. (1)

Y. S. Shen, W. K. Wang, and R. H. Horng, “Characterizations of metal-oxide-semiconductor field-effect transistors of ZnGaO grown on sapphire substrate,” IEEE. J. Electron. Devices Soc. 5(2), 112–116 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

S. Y. Bae, J. Lee, H. Jung, J. Park, and J. P. Ahn, “Helical structure of single-crystalline ZnGa2O4 nanowires,” J. Am. Chem. Soc. 127(31), 10802–10803 (2005).
[Crossref] [PubMed]

J. Electrochem. Soc. (2)

S. H. Yang, “Electrophoretic prepared ZnGa2O4 phosphor film for FED,” J. Electrochem. Soc. 150(10), H250–H253 (2003).
[Crossref]

S. H. Wu and H. C. Chang, “Preparation and characterization of nanosized ZnGa2O4 phosphors,” J. Electrochem. Soc. 151(7), H159–H163 (2004).
[Crossref]

J. Phys. D (1)

V. Wang, W. Xiao, L. J. Kang, R. J. Liu, H. Mizuseki, and Y. Kawazoe, “Sources of n-type conductivity in GaInO3,” J. Phys. D 48(1), 015101 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

S. J. Kim, H. H. Yoon, S. Y. Park, Y. S. Park, and H. W. Choi, “Synthesis of nanocrystalline ZnGa2O4 phosphor with different concentrations via a precipitation method,” Jpn. J. Appl. Phys. 47(11S), 784–786 (2008).
[Crossref]

Opt. Express (1)

Semicond. Sci. Technol. (1)

H. Z. Xi, B. Y. Man, C. S. Chen, M. Liu, J. Wei, and S. Y. Yang, “Effects of annealing temperature on amorphous GaN films formed on Si(111) by pulsed laser deposition,” Semicond. Sci. Technol. 24(8), 085024 (2009).
[Crossref]

Solid-State Electron. (1)

H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors,” Solid-State Electron. 47(12), 2261–2267 (2003).
[Crossref]

Other (1)

R. H. Horng, C. Y. Huang, S. L. Ou, T. K. Juang, and P. L. Liu, “Epitaxial growth of ZnGa2O4: A new deep ultraviolet semiconductor candidate,” Cryst. Growth Des. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Formation process of a C-LED: (a) epitaxial layer, (b) ITO deposition, (c) mesa, and (d) metal pad. Formation process of a W-LED: (e) ITO deposition on the epitaxial layer, (f) ZGO deposition, (g) mesa, and (h) metal pad. Formation process of a D-LED: (i) dot-ITO deposition, (j) ZGO deposition, (k) mesa, (l) metal pad, and (m) schematic diagram of ZGO/dot-ITO pattern design.
Fig. 2
Fig. 2 (a) XRD data of ZGO films deposited under different DEZn flow rates and (b) magnification of the ZGO (111) diffraction peak.
Fig. 3
Fig. 3 Resistivity of ZGO (thickness = 200 nm) deposited on ITO with different thicknesses.
Fig. 4
Fig. 4 (a) Optical transmittance data for ZGO/ITO samples with different film thicknesses (a) and structures (b).
Fig. 5
Fig. 5 Forward IV characteristics of ZGO/ITO UV LEDs with different structures.
Fig. 6
Fig. 6 (a) Light output power as a function of injection current and (b) EL emission spectra at 200 mA for the three types of ZGO/ITO UV LEDs.
Fig. 7
Fig. 7 (a) Wall-plug efficiencies and (b) EQEs of the three types of LEDs as functions of injection current.
Fig. 8
Fig. 8 Schematic diagrams showing the (a) current-spreading paths and (b) photon paths of the three LEDs.

Tables (1)

Tables Icon

Table 1 Crystallinity Data of ZGO Thin Films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 0.9λ / FWHMcos( θ ),

Metrics