Abstract

Vector vortices with spatially varying polarization are interesting phenomena and have motivated many recent studies. A vector vortex in the wavefield of a surface plasmon polariton (SPP) may be extended to the sub-wavelength scale, which would be more significant. However, the formation of vector vortices requires the polarization state to possess components parallel to the surface of metal films. In this study, we generated radially polarized vector plasmonic vortices using the metasurface spiral of orthogonal nanoslit pairs. We theoretically derived the x and y component expressions in the central point area of the spiral and obtained a doughnut-shaped intensity distribution with radial polarization. The Jones matrix of the metasurface spiral was generated to describe the polarization characteristics. The results were validated by performing finite-difference time-domain simulations. In addition, we used a Mach–Zehnder interferometer system to extract the intensity and phase distributions of different components of the SPP field. The experimental doughnut-shaped radially polarized vector vortex was consistent with the theoretical and simulated results.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation

Seong-Won Moon, Hee-Dong Jeong, Siwoo Lee, Byoungho Lee, Yong-Sang Ryu, and Seung-Yeol Lee
Opt. Express 27(14) 19119-19129 (2019)

Polarization-multiplexed plasmonic phase generation with distributed nanoslits

Seung-Yeol Lee, Kyuho Kim, Gun-Yeal Lee, and Byoungho Lee
Opt. Express 23(12) 15598-15607 (2015)

Generation of a plasmonic radially polarized vector beam with linearly polarized illumination

Yu-Qin Zhang, Xiang-Yu Zeng, Rui-Rui Zhang, Zi-Jun Zhan, Xing Li, Li Ma, Chun-Xiang Liu, Chang-Wei He, and Chuan-Fu Cheng
Opt. Lett. 43(17) 4208-4211 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
    [Crossref] [PubMed]
  2. M. M. Sánchez-López, J. A. Davis, N. Hashimoto, I. Moreno, E. Hurtado, K. Badham, A. Tanabe, and S. W. Delaney, “Performance of a q-plate tunable retarder in reflection for the switchable generation of both first- and second-order vector beams,” Opt. Lett. 41(1), 13–16 (2016).
    [Crossref] [PubMed]
  3. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
    [Crossref] [PubMed]
  4. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
    [Crossref]
  5. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
    [Crossref] [PubMed]
  6. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
    [Crossref] [PubMed]
  7. C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
    [Crossref]
  8. Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, and C.-S. Guo, “Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators,” Opt. Express 22(2), 1636–1644 (2014).
    [Crossref] [PubMed]
  9. H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
    [Crossref] [PubMed]
  10. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [Crossref] [PubMed]
  11. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]
  12. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  13. E. Y. Yew and C. J. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett. 32(23), 3417–3419 (2007).
    [Crossref] [PubMed]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  15. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
    [Crossref]
  16. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
    [Crossref] [PubMed]
  17. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [Crossref]
  18. Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37(22), 4627–4629 (2012).
    [Crossref] [PubMed]
  19. P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
    [Crossref] [PubMed]
  20. S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
    [Crossref]
  21. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  22. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
    [Crossref] [PubMed]
  23. C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
    [Crossref] [PubMed]
  24. C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
    [Crossref]
  25. C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
    [Crossref]
  26. W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
    [Crossref] [PubMed]
  27. A. Liu, G. Rui, X. Ren, Q. Zhan, G. Guo, and G. Guo, “Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens,” Opt. Express 20(22), 24151–24159 (2012).
    [Crossref] [PubMed]
  28. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  29. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  30. A. E. Miroshnichenko and Y. S. Kivshar, “Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
    [Crossref] [PubMed]
  31. Z. Li, M. Zhang, G. Liang, X. Li, X. Chen, and C. Cheng, “Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination,” Opt. Express 21(13), 15755–15764 (2013).
    [Crossref] [PubMed]
  32. X. Li, Y. Gao, S. Jiang, L. Ma, C. Liu, and C. Cheng, “Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits,” Opt. Express 23(3), 3507–3522 (2015).
    [Crossref] [PubMed]
  33. T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17(20), 17483–17490 (2009).
    [Crossref] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  35. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [Crossref] [PubMed]
  36. A. Giannattasio and W. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express 13(2), 428–434 (2005).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
[Crossref]

X. Li, Y. Gao, S. Jiang, L. Ma, C. Liu, and C. Cheng, “Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits,” Opt. Express 23(3), 3507–3522 (2015).
[Crossref] [PubMed]

2014 (4)

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22(14), 17207–17215 (2014).
[Crossref] [PubMed]

Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, and C.-S. Guo, “Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators,” Opt. Express 22(2), 1636–1644 (2014).
[Crossref] [PubMed]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

2013 (6)

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[Crossref] [PubMed]

Z. Li, M. Zhang, G. Liang, X. Li, X. Chen, and C. Cheng, “Generation of high-order optical vortices with asymmetrical pinhole plates under plane wave illumination,” Opt. Express 21(13), 15755–15764 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

2010 (2)

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

2009 (2)

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

T. V. Teperik, A. Archambault, F. Marquier, and J. J. Greffet, “Huygens-Fresnel principle for surface plasmons,” Opt. Express 17(20), 17483–17490 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (3)

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

1996 (1)

Alfano, R. R.

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Archambault, A.

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Badham, K.

Banzer, P.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Barnes, W.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bauer, T.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Biss, D. P.

Brown, T. G.

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Chang, R. S.

Chang, R.-S.

C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
[Crossref]

Chen, C.-F.

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Chen, H.

Chen, H.-F.

C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
[Crossref]

Chen, S.

Chen, X.

Cheng, C.

Cho, S.-W.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Davis, J. A.

Delaney, S. W.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fang, H.

Gao, Y.

Giannattasio, A.

Gjonaj, B.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Gordon, R.

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Greffet, J. J.

Guo, C.-S.

Guo, G.

Han, C.-Y.

C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
[Crossref]

Han, Y.-J.

Hao, J.

Hashimoto, N.

Hasman, E.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Hossain, Z.

Hu, Z. J.

Huang, C.-B.

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
[Crossref]

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, J.-S.

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, W.-L.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Hurtado, E.

Jiang, S.

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jureller, J. E.

Kang, M.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Karimi, E.

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Kim, H.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Kim, S.-J.

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[Crossref] [PubMed]

Kleiner, V.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Ku, C.-D.

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

Ku, C.-T.

C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
[Crossref]

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Kuipers, L.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Kwon, H.

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Lagendijk, A.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Lee, B.

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Lee, S.-Y.

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Leuchs, G.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Li, X.

Li, Y.

Li, Z.

Liang, G.

Lin, H.-N.

C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
[Crossref]

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Ling, X.

Liu, A.

Liu, C.

Liu, Y.

Luo, H.

Ma, L.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Marquier, F.

Marrucci, L.

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Milione, G.

Min, C. J.

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[Crossref] [PubMed]

Moreno, I.

Mosk, A. P.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Nesterov, A. V.

Nguyen, T. A.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Niziev, V. G.

Nolan, D.

Orlov, S.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Park, J.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

Park, S.

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Piccirillo, B.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Pratavieira, S.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Ren, X.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rong, Z.-Y.

Rui, G.

Rumala, Y. S.

Sánchez-López, M. M.

Santamato, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Schadt, M.

Scherer, N. F.

Shen, Z.

Sheppard, C. J.

Slussarenko, S.

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Stalder, M.

Tai, Y.-H.

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Tan, P. S.

Tanabe, A.

Teperik, T. V.

Toussaint, K. C.

Tsai, W.-Y.

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Wang, H.-T.

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
[Crossref] [PubMed]

Wang, S.-Z.

Wei, P.-K.

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Wen, S.

Xu, J.

Yew, E. Y.

Yi, X.

Youngworth, K. S.

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, G. H.

Yuan, X.-C.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Zhan, Q.

Zhang, B.-F.

Zhang, D. H.

Zhang, M.

Zhang, N.

Zhang, Z.

Zhou, X.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C.-T. Ku, H.-N. Lin, and C.-B. Huang, “Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns,” Appl. Phys. Lett. 106(5), 053112 (2015).
[Crossref]

IEEE Photonics J. (1)

C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S.-Y. Lee, S.-J. Kim, H. Kwon, and B. Lee, “Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Nano Lett. (3)

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[Crossref] [PubMed]

C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5(6), 360–363 (2011).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (8)

Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, and R. R. Alfano, “Tunable supercontinuum light vector vortex beam generator using a q-plate,” Opt. Lett. 38(23), 5083–5086 (2013).
[Crossref] [PubMed]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
[Crossref] [PubMed]

M. M. Sánchez-López, J. A. Davis, N. Hashimoto, I. Moreno, E. Hurtado, K. Badham, A. Tanabe, and S. W. Delaney, “Performance of a q-plate tunable retarder in reflection for the switchable generation of both first- and second-order vector beams,” Opt. Lett. 41(1), 13–16 (2016).
[Crossref] [PubMed]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37(22), 4627–4629 (2012).
[Crossref] [PubMed]

H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett. 36(16), 3179–3181 (2011).
[Crossref] [PubMed]

P. S. Tan, G. H. Yuan, Q. Wang, N. Zhang, D. H. Zhang, and X.-C. Yuan, “Phase singularity of surface plasmon polaritons generated by optical vortices,” Opt. Lett. 36(16), 3287–3289 (2011).
[Crossref] [PubMed]

K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005).
[Crossref] [PubMed]

E. Y. Yew and C. J. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel-Gauss beams,” Opt. Lett. 32(23), 3417–3419 (2007).
[Crossref] [PubMed]

Opt. Rev. (1)

C.-Y. Han, R.-S. Chang, and H.-F. Chen, “Solid-state interferometry of a pentaprism for generating cylindrical vector beam,” Opt. Rev. 20(2), 189–192 (2013).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Phys. Rev. Lett. (3)

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Science (2)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Polarization traffic control for surface plasmons,” Science 340(6130), 283–284 (2013).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of the metasurface spiral etched using a focused ion beam (FIB). (b) Diagram of the metasurface for generating a vector vortex. (c) Illustration of the orientations and basic geometrical parameter of the slits. (d) Approximation of (c).
Fig. 2
Fig. 2 Analytical and numerical simulation results for the metasurface spiral. It is illuminated by RCP light, as indicated by the white solid arrow in (a). (a–c) Intensity profiles of Ex + Ey, Ex, and Ey, respectively. (d) Polarization map superimposed on the magnified view of the white dashed square in (a). (e, f) Corresponding phase distributions of x- and y-components. (g–l) Corresponding simulation results.
Fig. 3
Fig. 3 Experimental setup. The desired circularly polarized light was generated by passing a laser beam through a properly oriented quarter-wave plate (QWP), then splitting it into two beams by using a beam splitter (BS1). One beam was used as the reference wave, while the other illuminated the sample (S) at normal incidence to excite the SPPs on the sample surface. The S-CMOS recorded both the scattered SPP pattern and the interference pattern after passing through the polarized analyzer (P1).
Fig. 4
Fig. 4 Experimental results for the metasurface spiral illuminated by RCP light. Intensity distributions obtained (a) without and (b–e) with the analyzer. The polarization orientation of the analyzer is indicated by the white arrow in the top-right corner of each picture. A magnified view of the white square part indicated in each of the top panels is shown in its inset. (f) Polarization map describing the polarization state of the central vortex. (g–j) Corresponding phase patterns of different component wavefields.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

R= R 0 + λ spp 2π θ.
[ e ^ (i) e ^ (e) ]=[ cos[θ+(π/4)] sin[θ+(π/4)] sin[θ+(π/4)] cos[θ+(π/4)] ][ i ^ j ^ ].
[ e ^ n (i) e ^ n (e) ]=[ sin[θ+(π/4)] cos[θ+(π/4)] cos[θ+(π/4)] -sin[θ+(π/4)] ][ i ^ j ^ ].
E n (i) =( E in0 / 2 )exp{i[(π/4)θ]} e ^ n (i)
E n (e) =( E in0 / 2 )exp{±i[(π/4)+θ]} e ^ n (e) .
E nc (i) =(1/2) E in0 exp{i[(π/4)θ]} e ^ nc ,
E nc (e) =(1/2) E in0 exp{±i[(π/4)+θ]} e ^ nc .
E nc = E nc (i) + E ^ nc (e) e iπ/2 .
E nc = E nc (i) + E ^ nc (e) e iπ/2 ={ E in0 exp{i[(π/4)θ]} e ^ nc , for RCP 0 , for LCP .
E tc (i) =(1/2) E in0 exp{±i[θ(π/4)]} e ^ θ ,
E tc (e) =(1/2) E in0 exp{i[θ+(π/4)]} e ^ θ .
E tc = E tc (i) + E tc (e) exp(i k spp s/2)=0,
E nc ( x p , y p )=(i/ λ sp ) dl E nc ( x q , y q )exp(i k sp ρ)exp(iπ/4)/ ρ ,
ρ= [ R 2 + r 2 -2Rrcos(αθ)] 1/2 .
ρ=Rrcos(αθ)=R( x p x q + y p y q )/R.
[ E nc, x ( x p , y p ) E nc, y ( x p , y p ) ]=(i/ λ sp R ) FT{[ E nc ( x q , y q )cosθ E nc ( x q , y q )sinθ ]exp(iπ/4) },
[ E nc, x (r,α) E nc, y (r,α) ]=i/ λ sp R dl [ E nc (R,θ)cosθ E nc (R,θ)sinθ ]exp[i k sp rcos(αθ)]exp[i k sp (R+π/4)].
E nc, x (r,α)=( E nc0 R 0 π/2)[ J 1 ( k sp r)exp(iα)- J 1 ( k sp r)exp(-iα)],
E nc0 =i 2 E in0 exp[i( k sp R 0 +π/2)]/ λ sp R .
E nc, x (r,α)= E nc0 Rπ J 1 ( k sp r)cosα.
E nc, y (r,α)= E nc0 Rπ J 1 ( k sp r)sinα.
Φ(α)=lα+ Φ 0 ,
J l (α)=[ cos(lα+ Φ 0 ) sin(lα+ Φ 0 ) ].
[ J xx J xy J yx J yy ] [ 1 i ]=[ cosα sinα ].
[ J xx J xy J yx J yy ] [ 1 i ]=[ 0 0 ].
M= E nc0 Rπ J 1 ( k sp r)/ 2 [ cosα icosα sinα isinα ].

Metrics