Abstract

We report experimental observation of strong coupling between surface plasmon polariton (SPP) propagating on a thin silver film and excitons from excited-subband transtitions of single-walled carbon nanotubes (SWNTs). Clear anti-crossing behaviors were observed from attenuated total reflection measurements when the SPP energy approaches the 2nd subband transition of (6,5) SWNTs. The maximum Rabi splitting of the plasmon-exciton mixed states was extracted to be up to ~166.2 meV. Moreover, the splitting was found to be dependent linearly on the square root of the SWNTs concentration, in good agreement with theoretical prediction.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon

Padmnabh Rai, Nicolai Hartmann, Johann Berthelot, Gérard Colas-des-Francs, Achim Hartschuh, and Alexandre Bouhelier
Opt. Lett. 37(22) 4711-4713 (2012)

Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets

T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny
Opt. Mater. Express 2(6) 782-788 (2012)

Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity

Dmitriy Dovzhenko, Konstantin Mochalov, Ivan Vaskan, Irina Kryukova, Yury Rakovich, and Igor Nabiev
Opt. Express 27(4) 4077-4089 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
    [Crossref] [PubMed]
  2. T. Ando, “Excitons in Carbon Nanotubes,” J. Phys. Soc. Jpn. 66(4), 1066–1073 (1997).
    [Crossref]
  3. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
    [Crossref] [PubMed]
  4. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
    [Crossref] [PubMed]
  5. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
    [Crossref] [PubMed]
  6. W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
    [Crossref] [PubMed]
  7. V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
    [Crossref] [PubMed]
  8. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
    [Crossref] [PubMed]
  9. W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
    [Crossref]
  10. J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
    [Crossref] [PubMed]
  11. W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
    [Crossref]
  12. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
    [Crossref]
  13. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
    [Crossref]
  14. K. Murch, “Cavity quantum electrodynamics: Beyond strong,” Nat. Phys. 13(1), 11–12 (2017).
    [Crossref]
  15. E. Gaufrès, N. Izard, X. Le Roux, S. Kazaoui, D. Marris-Morini, E. Cassan, and L. Vivien, “Optical microcavity with semiconducting single-wall carbon nanotubes,” Opt. Express 18(6), 5740–5745 (2010).
    [Crossref] [PubMed]
  16. F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
    [Crossref]
  17. A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
    [Crossref] [PubMed]
  18. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
    [Crossref] [PubMed]
  19. D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
    [Crossref]
  20. F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
    [Crossref] [PubMed]
  21. A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
    [Crossref] [PubMed]
  22. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  23. C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
    [Crossref]
  24. G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
    [Crossref] [PubMed]
  25. Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
    [Crossref] [PubMed]
  26. Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
    [Crossref] [PubMed]
  27. S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
    [Crossref] [PubMed]
  28. P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
    [Crossref] [PubMed]
  29. Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
    [Crossref] [PubMed]
  30. H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
    [Crossref] [PubMed]
  31. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref] [PubMed]
  32. C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
    [Crossref]
  33. C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
    [Crossref]
  34. S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
    [Crossref]

2017 (3)

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

K. Murch, “Cavity quantum electrodynamics: Beyond strong,” Nat. Phys. 13(1), 11–12 (2017).
[Crossref]

2016 (5)

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

2015 (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (3)

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

2013 (4)

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

2012 (1)

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

2011 (1)

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

2010 (3)

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

E. Gaufrès, N. Izard, X. Le Roux, S. Kazaoui, D. Marris-Morini, E. Cassan, and L. Vivien, “Optical microcavity with semiconducting single-wall carbon nanotubes,” Opt. Express 18(6), 5740–5745 (2010).
[Crossref] [PubMed]

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

2008 (2)

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

2007 (1)

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

2006 (2)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
[Crossref]

2005 (3)

V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
[Crossref] [PubMed]

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

2004 (2)

V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

2002 (1)

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

1997 (1)

T. Ando, “Excitons in Carbon Nanotubes,” J. Phys. Soc. Jpn. 66(4), 1066–1073 (1997).
[Crossref]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Ando, T.

T. Ando, “Excitons in Carbon Nanotubes,” J. Phys. Soc. Jpn. 66(4), 1066–1073 (1997).
[Crossref]

Arakawa, Y.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Arocas, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Ates, S.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Avouris, P.

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
[Crossref] [PubMed]

Aydinli, A.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Bachilo, S. M.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Balci, S.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Becker, T.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

Bellessa, J.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
[Crossref]

Berthelot, J.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Besga, B.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Bonnand, C.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
[Crossref]

Bouchoule, S.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Bouhelier, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Boul, P. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Brehier, A.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Brus, L. E.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

Capaz, R. B.

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

Cassan, E.

Chassagneux, Y.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Colas des Francs, G.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Dai, H.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Deleporte, E.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Dukovic, G.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

Englert, B.-G.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

Estève, J.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Fernandez-Garcia, R.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Flavel, B. S.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Ftterling, V.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Gather, M. C.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Gaufrès, E.

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Graf, A.

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Hähnlein, B.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Haroz, E. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Hartmann, N.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Hartschuh, A.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Hauge, R. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Heeg, S.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Heinz, T. F.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

Hennrich, F.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Hong, G.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Huffman, C. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Imamura, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ishii, A.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ismail-Beigi, S.

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

Iwamoto, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Izard, N.

Jeantet, A.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Kappes, M. M.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Karademir, E.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Kataura, H.

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Kato, Y. K.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Kazaoui, S.

Khasminskaya, S.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kittrell, C.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Kocabas, C.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Kono, J.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Krstic, V.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Krupke, R.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Lafosse, X.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Lanty, G.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Lauret, J. S.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Le Roux, X.

Legrand, D.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Lehmann, C.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Liao, J.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Lin, Y.-M.

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

Liu, H.

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Liu, X.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

Louie, S. G.

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

Ma, J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Maier, S. A.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Marris-Morini, D.

Maruyama, S.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Miura, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Miyauchi, Y.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Moore, V. C.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Murch, K.

K. Murch, “Cavity quantum electrodynamics: Beyond strong,” Nat. Phys. 13(1), 11–12 (2017).
[Crossref]

Nakamura, D.

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

Nishide, D.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Noon, W. H.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

O’Connell, M. J.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Ohta, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Oikonomou, A.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Parashkov, R.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Peng, L. M.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Peng, L.-M.

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

Perebeinos, V.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
[Crossref] [PubMed]

Pernice, W. H. P.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Pezoldt, J.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Plenet, J. C.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
[Crossref]

Portugall, O.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Pyatkov, F.

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Rai, P.

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

Raynaud, C.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Reich, S.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Reichel, J.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Rialon, K. L.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Rikken, G. L.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Roquelet, C.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Roussignol, P.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Roussignol, Ph.

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Salihoglu, O.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

Sasaki, T.

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

Schießl, S. P.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Shaver, J.

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Shimada, T.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Smalley, R. E.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Spataru, C. D.

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

Steiner, M.

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

Strano, M. S.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Sun, J.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Symonds, C.

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Tabakman, S. M.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Takeyama, S.

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

Tanaka, T.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Tersoff, J.

V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
[Crossref] [PubMed]

Tian, C.

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Tropf, L.

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Varcoe, B. T. H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Vijayaraghavan, A.

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

Vivien, L.

Voisin, C.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

Walther, H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

Wang, F.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

Wang, H.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Wang, S.

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Wang, X.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Wei, N.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Weisman, R. B.

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Welsher, K.

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

Xia, F.

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

Xu, C. Y.

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Yang, L.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Zakharko, Y.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Zaumseil, J.

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Zhang, J.

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

Zhang, X. H.

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Zhang, Y. J.

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

Zhang, Z.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Zhou, C.

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

Zhou, W.

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

Zhou, W. H.

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

Appl. Phys. Lett. (3)

W. H. Zhou, Y. J. Zhang, X. H. Zhang, C. Tian, and C. Y. Xu, “Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity,” Appl. Phys. Lett. 111(16), 163104 (2017).
[Crossref]

D. Legrand, C. Roquelet, G. Lanty, Ph. Roussignol, X. Lafosse, S. Bouchoule, E. Deleporte, C. Voisin, and J. S. Lauret, “Monolithic microcavity with carbon nanotubes as active material,” Appl. Phys. Lett. 102(15), 153102 (2013).
[Crossref]

C. Zhou, S. Wang, J. Sun, N. Wei, L. Yang, Z. Zhang, J. Liao, and L. M. Peng, “Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles,” Appl. Phys. Lett. 102(10), 103102 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, and H. Dai, “Metal-Enhanced Fluorescence of Carbon Nanotubes,” J. Am. Chem. Soc. 132(45), 15920–15923 (2010).
[Crossref] [PubMed]

J. Phys. Soc. Jpn. (1)

T. Ando, “Excitons in Carbon Nanotubes,” J. Phys. Soc. Jpn. 66(4), 1066–1073 (1997).
[Crossref]

Nano Lett. (6)

V. Perebeinos, J. Tersoff, and P. Avouris, “Radiative Lifetime of Excitons in Carbon Nanotubes,” Nano Lett. 5(12), 2495–2499 (2005).
[Crossref] [PubMed]

J. Shaver, J. Kono, O. Portugall, V. Krstić, G. L. Rikken, Y. Miyauchi, S. Maruyama, and V. Perebeinos, “Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking,” Nano Lett. 7(7), 1851–1855 (2007).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

S. Heeg, A. Oikonomou, R. Fernandez-Garcia, C. Lehmann, S. A. Maier, A. Vijayaraghavan, and S. Reich, “Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities,” Nano Lett. 14(4), 1762–1768 (2014).
[Crossref] [PubMed]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface Plasmon Mediated Strong Exciton-Photon Coupling in Semiconductor Nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Nat. Commun. (3)

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C. Gather, “Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities,” Nat. Commun. 7, 13078 (2016).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Xia, M. Steiner, Y.-M. Lin, and P. Avouris, “A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths,” Nat. Nanotechnol. 3(10), 609–613 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Pyatkov, V. Ftterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Nat. Phys. (1)

K. Murch, “Cavity quantum electrodynamics: Beyond strong,” Nat. Phys. 13(1), 11–12 (2017).
[Crossref]

New J. Phys. (1)

C. Symonds, C. Bonnand, J. C. Plenet, A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte, and J. Bellessa, “Particularities of surface plasmon–exciton strong coupling with large Rabi splitting,” New J. Phys. 10(6), 065017 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Phys. Rev. B (3)

W. H. Zhou, T. Sasaki, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields,” Phys. Rev. B 87(24), 241406 (2013).
[Crossref]

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B 86(23), 235402 (2012).
[Crossref]

C. Bonnand, J. Bellessa, and J. C. Plenet, “Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface,” Phys. Rev. B 73(24), 245330 (2006).
[Crossref]

Phys. Rev. Lett. (5)

P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of Excitons in Carbon Nanotubes,” Phys. Rev. Lett. 92(25), 257402 (2004).
[Crossref] [PubMed]

C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie, “Theory and Ab Initio Calculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes,” Phys. Rev. Lett. 95(24), 247402 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes,” Phys. Rev. Lett. 92(17), 177401 (2004).
[Crossref] [PubMed]

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69(5), 1325–1382 (2006).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Sci. Adv. (1)

Y. Liu, J. Zhang, H. Liu, S. Wang, and L.-M. Peng, “Electrically driven monolithic subwavelength plasmonic interconnect circuits,” Sci. Adv. 3(10), e1701456 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Zhou, D. Nakamura, H. Liu, H. Kataura, and S. Takeyama, “Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes,” Sci. Rep. 4(1), 6999 (2014).
[Crossref] [PubMed]

Science (2)

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The Optical Resonances in Carbon Nanotubes Arise from Excitons,” Science 308(5723), 838–841 (2005).
[Crossref] [PubMed]

M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science 297(5581), 593–596 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematics showing the structure of our sample and the Kretschmann-Raether geometry for the reflectometry measurements. SPPs were generated at the Ag-PVA interface. (b) Energy subbands for semiconducting SWNTs and the dominant optically-allowed transitions. In this work, we focus on the 2nd subband (E22) transition. (c) Typical absorption spectrum of the purified (6,5) SWNTs. Inter-subband transitions can be identified at least up to the 4th subband. The studied E22 transition was highlighted by an arrow.
Fig. 2
Fig. 2 The attenuated total reflection spectra of the fabricated sample (Ag film thickness ~55 nm) taken at different angles of incidence. The spectra were offset vertically to make the spectral features clearly visible. The vertical dash-dotted line denotes the energy position of the uncoupled E22 exciton of the (6,5) SWNTs. All measurements were taken at room temperature.
Fig. 3
Fig. 3 (a) Energies of the reflectivity dips, extracted from Fig. 2, as a function of the wave vector. Horizontal dashed line: E22 exciton of (6,5) SWNTs. Olive dash-dot-dotted line: dispersion of the uncoupled SPP mode. Orange solid lines: fitted dispersion curves using the coupled oscillator model for the strongly coupled exciton-surface plasmon polaritons. (b) Dispersion of the bare SPP mode obtained from a reference device without SWNT doping. The olive dash-dot-dotted line represents the best-fit curve for the experimental data. (c) FWHM of the two reflectivity dips in Fig. 2 as a function of their wave vector. Vertical dash-dot-dotted line: position of resonant coupling. (d) Rabi splitting as a function of the amount of linewidth mismatch.
Fig. 4
Fig. 4 Rabi splitting of the SPP-SWNTs coupled system as a function of the square root of the (6,5) SWNT concentration. The (6,5) SWNT concentration is represented by its light absorption intensity. The absorption intensity (SWNT concentration) shown here has been normalized to the maximum intensity (concentration) measured in this work.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k = 2 π λ n p sin θ
E U , L ( k ) = E S P ( k ) + E X 2 ± 1 2 ( Ω R ) 2 + ( E S P ( k ) E X ) 2
Ω R = 4 V 2 ( γ p γ e ) 2

Metrics