Abstract

A compact and stable terahertz (THz) source is demonstrated based on difference frequency generation (DFG) pumped by an efficient dual-wavelength acousto-optic (AO) Q-switched solid-state Nd:YLF laser with composite gain media (a-cut and c-cut) in the coaxial pumping configuration. Optimal power ratio and pulse synchronization of the orthogonal polarized 1047/1053 nm dual-wavelength laser could be realized by varying the pump focusing depth and/or pump wavelength. The total power of 2.92 W was obtained at 5 kHz pumped by 10-W laser-diode power at 803 nm. Such an efficient dual-wavelength laser demonstrated good stability and inconspicuous timing jitter benefiting from the suppressed gain competition between two resonating wavelengths. An 8-mm-long GaSe crystal was employed to generate THz waves at 1.64 THz by DFG and the maximum THz average output power was about 0.93 μW. This compact coaxial pumping method can be extended to all kinds of neodymium (Nd) doped laser crystals to produce different dual-wavelength lasers for various THz wavelength generation, which have good prospects for portable and costless applications like imaging, non-destructive inspection, etc.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm

Jialin Mei, Kai Zhong, Maorong Wang, Yang Liu, Degang Xu, Wei Shi, Yuye Wang, Jianquan Yao, Robert A. Norwood, and Nasser Peyghambarian
Opt. Express 24(20) 23368-23375 (2016)

High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2  μm dual-wavelength intracavity KTP optical parametric oscillator

Dexian Yan, Yuye Wang, Degang Xu, Pengxiang Liu, Chao Yan, Jia Shi, Hongxiang Liu, Yixin He, Longhuang Tang, Jianchen Feng, Jianqin Guo, Wei Shi, Kai Zhong, Yuen H. Tsang, and Jianquan Yao
Photon. Res. 5(2) 82-87 (2017)

Dual-signal-resonant optical parametric oscillator intracavity driven by a coaxially end-pumped laser with compound gain media

Yang Liu, Kai Zhong, Jie Shi, Hongzhan Qiao, Xin Ding, Degang Xu, and Jianquan Yao
Opt. Express 26(16) 20768-20776 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Ding, “Progress in terahertz sources based on difference-frequency generation [Invited],” J. Opt. Soc. Am. B 31(11), 2696–2711 (2014).
    [Crossref]
  2. K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).
  3. S. Ya. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
    [Crossref]
  4. E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
    [Crossref]
  5. D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
    [Crossref]
  6. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
    [Crossref] [PubMed]
  7. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
    [Crossref] [PubMed]
  8. J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
    [Crossref] [PubMed]
  9. J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
    [Crossref]
  10. P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, X. Mu, H. C. Lee, S. K. Meissner, and H. Meissner, “Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates: terahertz generation by mixing a pair of idler waves,” Opt. Lett. 37(7), 1283–1285 (2012).
    [Crossref] [PubMed]
  11. K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
    [Crossref]
  12. K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
    [Crossref]
  13. T. L. Huang, C. L. Sung, H. P. Cheng, C. Y. Cho, H. C. Liang, K. W. Su, K. F. Huang, and Y. F. Chen, “Synchronized self-mode-locked 1061-nm and 1064-nm monolithic Nd:YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating,” Opt. Express 24(19), 22189–22197 (2016).
    [Crossref] [PubMed]
  14. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
    [Crossref] [PubMed]
  15. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  16. Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
    [Crossref]
  17. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118(3), 375–378 (1995).
    [Crossref]
  18. V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
    [Crossref]
  19. W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32(8), 949–951 (2007).
    [Crossref] [PubMed]
  20. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  21. J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
    [Crossref]

2017 (3)

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

2016 (3)

2015 (1)

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

2014 (1)

2013 (1)

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

2012 (2)

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, X. Mu, H. C. Lee, S. K. Meissner, and H. Meissner, “Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates: terahertz generation by mixing a pair of idler waves,” Opt. Lett. 37(7), 1283–1285 (2012).
[Crossref] [PubMed]

2011 (2)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

2010 (1)

2007 (4)

2002 (1)

2000 (1)

1995 (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118(3), 375–378 (1995).
[Crossref]

Abe, T.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Andreev, Y.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Asai, K.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Bezotosnyi, V. V.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Chavez-Pirson, A.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Chen, Y. F.

Cheng, H. P.

Cheshev, E. A.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Chicklis, E. P.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Cho, C. Y.

Chu, J.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Cooney, A. T.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Creeden, D.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Ding, Y. J.

Dove, W.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Fejer, M. M.

Fernelius, N.

Fu, S.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

Gorbunkov, M. V.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Guo, S.

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

Hatanaka, T.

Huang, J.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Huang, K. F.

Huang, T. L.

Huang, Z.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Ito, H.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[Crossref] [PubMed]

Jiang, S.

Joshi, C.

Kawase, K.

Ketteridge, P. A.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Kokh, K.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Komiak, J. J.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Koromyslov, A. L.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Krokhin, O. N.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118(3), 375–378 (1995).
[Crossref]

Lanskii, G.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Lee, H. C.

Leigh, M.

Liang, H. C.

Liang, W.

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

Liu, C.

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

Liu, P.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Liu, Y.

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

McCarthy, J. C.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Mei, J.

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Meissner, H.

Meissner, S. K.

Minamide, H.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Mityagin, Yu. A.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Miyake, Y.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Mu, X.

Nakamura, K.

Nawata, K.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Norwood, R. A.

Ouyang, C.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Petersen, E. B.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Peyghambarian, N.

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Popov, Yu. M.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Ragam, S.

Sato, A.

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Savinov, S. A.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Schaar, J. E.

Schunemann, P. G.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Shaiduko, A.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Shi, W.

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32(8), 949–951 (2007).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Southward, T.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

Su, K. W.

Sung, C.

Sung, C. L.

Takahashi, H.

Taniuchi, T.

Teng, B.

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Tochitsky, S. Ya.

Tong, J.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Trubnick, S. E.

Tunkin, V. G.

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Vodopyanov, K.

Vodopyanov, K. L.

Wang, M.

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Wang, Y.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Xiao, Y.

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Xu, D.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Yan, C.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

Yao, J.

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Zhao, P.

Zhong, K.

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
[Crossref] [PubMed]

Zong, J.

Zotova, I. B.

Appl. Phys. Express (1)

K. Nawata, T. Abe, Y. Miyake, A. Sato, K. Asai, H. Ito, and H. Minamide, “Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser,” Appl. Phys. Express 5(11), 112401 (2012).
[Crossref]

Appl. Phys. Lett. (2)

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[Crossref]

IEEE Photonics J. (2)

J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, and W. Liang, “Widely Tunable High-Repetition-Rate Terahertz Generation Based on an Efficient Doubly Resonant Type-II PPLN OPO,” IEEE Photonics J. 8(6), 5502107 (2016).
[Crossref]

Y. Liu, K. Zhong, J. Mei, M. Wang, S. Guo, C. Liu, D. Xu, W. Shi, and J. Yao, “Compact and flexible dual-wavelength laser generation in coaxial diode-end-pumped configuration,” IEEE Photonics J. 9(1), 1500210 (2017).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

K. Zhong, J. Mei, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, B. Teng, Y. Xiao, B. Teng, and Y. Xiao, “Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal,” J. Infrared Milli. Terahz. Waves 38(1), 87–95 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118(3), 375–378 (1995).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000).
[Crossref] [PubMed]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser,” Opt. Lett. 35(23), 3979–3981 (2010).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, X. Mu, H. C. Lee, S. K. Meissner, and H. Meissner, “Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates: terahertz generation by mixing a pair of idler waves,” Opt. Lett. 37(7), 1283–1285 (2012).
[Crossref] [PubMed]

W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32(8), 949–951 (2007).
[Crossref] [PubMed]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Phys. Procedia (1)

V. V. Bezotosnyi, E. A. Cheshev, M. V. Gorbunkov, A. L. Koromyslov, O. N. Krokhin, Yu. A. Mityagin, Yu. M. Popov, S. A. Savinov, and V. G. Tunkin, “Coherent THz repetitive pulse generation in a GaSe crystal by dual-wavelength Nd:YLF laser,” Phys. Procedia 72, 405–410 (2015).
[Crossref]

Sci. China Technol. Sci. (1)

K. Zhong, W. Shi, D. Xu, P. Liu, Y. Wang, J. Mei, C. Yan, S. Fu, and J. Yao, “Optically pumped terahertz sources,” Sci. China Technol. Sci. 60, 1–18 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental layout of the THz source based on a coaxial pumping dual-frequency solid-state laser. The dual-frequency laser is marked by the dashed border line. The inset is the detailed description of the focused pump beam and the composite gain medium inside the laser cavity.
Fig. 2
Fig. 2 Total laser output power and the powers at each polarization of the AO-Q-switched Nd:YLF laser versus input LD pump power. The pump focal position was z = −2 mm and the pulse repetition rate was 5 kHz.
Fig. 3
Fig. 3 Output spectra (a) and power fluctuation (b) of the coaxially pumped dual-wavelength Nd:YLF laser (z = −2 mm). The LD pump power was 10 W and the pulse repetition rate was 5 kHz.
Fig. 4
Fig. 4 Experimental (discrete symbols) and theoretical (curves) output powers versus the pump focal position z for the coaxially pumped dual-wavelength Nd:YLF laser. The LD pump power was 10 W and the pulse repetition rate was 5 kHz.
Fig. 5
Fig. 5 The temporal behavior of the coaxially pumped Q-switched dual-wavelength Nd:YLF laser (z = −2 mm) recorded by a Tektronix DPO 2024B oscilloscope: (a) Pulse train; (b) Synthetic pulse shape for both wavelengths; (c) Pulse shape at 1053 nm; (d) Pulse shape at 1047 nm. The LD pump power was 10 W and the pulse repetition rate was 5 kHz.
Fig. 6
Fig. 6 THz output characteristics. (a) Dependence of average THz output voltage on the dual-wavelength laser power. Solid curve corresponds to the quadratic fit to data points. (b) A typical THz waveform from the bolometer.

Metrics