Abstract

In this paper, we numerically demonstrate mid-IR nearly perfect resonant absorption and coherent thermal emission for both polarizations and wide angular region using multilayer designs of unpatterned films of hexagonal boron nitride (hBN). In these optimized structures, the films of hBN are transferred onto a Ge spacer layer on top of a one-dimensional photonic crystal (1D PC) composed of alternating layers of KBr and Ge. According to the perfect agreements between our analytical and numerical results, we discover that the mentioned optical characteristic of the hBN-based 1D PCs is due to a strong coupling between localized photonic modes supported by the PC and the phononic modes of hBN films. These coupled modes are referred as Tamm phonons. Moreover, our findings prove that the resonant absorptions can be red- or blue-shifted by changing the thickness of hBN and the spacer layer. The obtained results in this paper are beneficial for designing coherent thermal sources, light absorbers, and sensors operating within 6.2 μm to 7.3 μm in a wide angular range and both polarizations. The planar and lithography free nature of this multilayer design is a prominent factor that makes it a large scale compatible design.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Opt. Express 26(13) 16940-16954 (2018)

Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited]

Hodjat Hajian, Amir Ghobadi, Sina Abedini Dereshgi, Bayram Butun, and Ekmel Ozbay
J. Opt. Soc. Am. B 34(7) D29-D35 (2017)

Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings

Bo Zhao and Zhuomin M. Zhang
Opt. Express 25(7) 7791-7796 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660 (1999).
  2. A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).
  3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [PubMed]
  4. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
    [PubMed]
  5. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
  6. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).
  7. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).
  8. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).
  9. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399 (2004).
  10. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
  11. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(Suppl 3), A314–A334 (2010).
    [PubMed]
  12. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [PubMed]
  13. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [PubMed]
  14. Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).
  15. J. J. Greffet, “Applied physics: Controlled incandescence,” Nature 478(7368), 191–192 (2011).
    [PubMed]
  16. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).
  17. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
    [PubMed]
  18. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).
  19. F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).
  20. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).
  21. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
  22. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
  23. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
  24. M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
    [PubMed]
  25. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).
  26. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [PubMed]
  27. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).
  28. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(Suppl 1), A96–A110 (2013).
    [PubMed]
  29. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
    [PubMed]
  30. S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).
  31. K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104, 208–216 (2007).
  32. J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721 (2015).
  33. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).
  34. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [PubMed]
  35. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(Suppl 2), A126–A135 (2011).
    [PubMed]
  36. W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).
  37. W. Wang and W. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132, 36 (2014).
  38. W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).
  39. W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
    [PubMed]
  40. W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
    [PubMed]
  41. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  42. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [PubMed]
  43. A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
    [PubMed]
  44. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423 (1977).
  45. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).
  46. P. Ben-Abdallah and B. Ni, “Single-defect bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).
  47. B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129, 17 (2006).
  48. H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).
  49. S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
    [PubMed]
  50. Y. Chen, D. Zhang, L. Zhu, R. Wang, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures,” Optica 1(6), 407–413 (2014).
    [PubMed]
  51. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy,” Opt. Lett. 33(3), 204–206 (2008).
    [PubMed]
  52. B. J. Lee and Z. M. Zhang, “Indirect measurements of coherent thermal emission from a truncated photonic crystal structure,” J. Thermophysics and Heat Transfer 23, 9–17 (2009).
  53. B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).
  54. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
    [PubMed]
  55. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
    [PubMed]
  56. A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
    [PubMed]
  57. S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
    [PubMed]
  58. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
    [PubMed]
  59. H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).
  60. B. Zhao and Z. M. Zhang, “Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings,” Opt. Express 25(7), 7791–7796 (2017).
    [PubMed]
  61. B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106, 1025 (2017).
  62. P. Yeh, Optical Waves in Layered Media (Wiley, New Jersey, 1988).
  63. M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).
  64. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  65. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).
  66. H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).
  67. Seehttp:// www.lumerical.com/tcad-products/fdtd/for Lumerical Solutions, Inc.

2017 (9)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[PubMed]

W. Zhu, F. Xiao, I. D. Rukhlenko, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Wideband visible-light absorption in an ultrathin silicon nanostructure,” Opt. Express 25(5), 5781–5786 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

B. Zhao and Z. M. Zhang, “Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings,” Opt. Express 25(7), 7791–7796 (2017).
[PubMed]

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106, 1025 (2017).

2016 (1)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

2015 (7)

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5, 2721 (2015).

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[PubMed]

2014 (6)

Y. Chen, D. Zhang, L. Zhu, R. Wang, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures,” Optica 1(6), 407–413 (2014).
[PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

W. Wang and W. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132, 36 (2014).

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

2013 (4)

M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
[PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(Suppl 1), A96–A110 (2013).
[PubMed]

W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).

2012 (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

2011 (4)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

J. J. Greffet, “Applied physics: Controlled incandescence,” Nature 478(7368), 191–192 (2011).
[PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(Suppl 2), A126–A135 (2011).
[PubMed]

2010 (3)

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(Suppl 3), A314–A334 (2010).
[PubMed]

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).

2009 (4)

B. J. Lee and Z. M. Zhang, “Indirect measurements of coherent thermal emission from a truncated photonic crystal structure,” J. Thermophysics and Heat Transfer 23, 9–17 (2009).

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).

2008 (4)

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy,” Opt. Lett. 33(3), 204–206 (2008).
[PubMed]

2007 (3)

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104, 208–216 (2007).

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

2006 (3)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129, 17 (2006).

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).

2005 (4)

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).

P. Ben-Abdallah and B. Ni, “Single-defect bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

2004 (2)

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399 (2004).

2003 (1)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).

2002 (2)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

2000 (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

1999 (2)

R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660 (1999).

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).

1977 (1)

Akjouj, A.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

Alonso-González, P.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Andersen, T.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

Araghchini, M.

Arnold, C.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Avouris, P.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

Badugu, R.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[PubMed]

Y. Chen, D. Zhang, L. Zhu, R. Wang, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures,” Optica 1(6), 407–413 (2014).
[PubMed]

Balin, I.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

Bardou, N.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

Basov, D. N.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Bek, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

Ben-Abdallah, P.

P. Ben-Abdallah and B. Ni, “Single-defect bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).

Bermel, P.

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Birant, G.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

Boltasseva, A.

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

Bur, J.

M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
[PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

Caldwell, J. D.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Carminati, R.

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660 (1999).

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Castro Neto, A. H.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Celanovic, I.

Chan, W.

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[PubMed]

Chen, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Y. Chen, D. Zhang, L. Zhu, R. Wang, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures,” Optica 1(6), 407–413 (2014).
[PubMed]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

Chen, Y.-B.

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Collin, S.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).

Dahan, N.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Dai, S.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Davison, S. G.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Dereshgi, S. A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

Dewalt, C. J.

Djafari-Rouhani, B.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

Dobrzynski, L.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).

Dutta Choudhury, S.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[PubMed]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Ellis, C. T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Fan, S. H.

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

Fang, N. X.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Fedosejevs, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Fei, Z.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Fogler, M. M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Francescato, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Fu, C.

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).

Fu, C. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Fung, K. H.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Garin, M.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

Geng, J.

Ghebrebrhan, M.

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Giles, A. J.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Goldflam, M. D.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

Gorodetski, Y.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Greffet, J.

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

Greffet, J. J.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

J. J. Greffet, “Applied physics: Controlled incandescence,” Nature 478(7368), 191–192 (2011).
[PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660 (1999).

Greffet, J.-J.

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

Guler, U.

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).

Hamam, R.

Hasman, E.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

He, C.

Hillenbrand, R.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Hone, J.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Hong, C. S.

Hong, M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Hsieh, M. L.

Hu, H.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Jacob, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(Suppl 1), A96–A110 (2013).
[PubMed]

Janssen, G. C. A. M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

Jarillo-Herrero, P.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Jensen, K. F.

Jin, R.

Joannopoulos, J. D.

Johnson, S. G.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Joulain, A.

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

Joulain, K.

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104, 208–216 (2007).

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

Kalafi, M.

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Kasaya, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Keilmann, F.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Kildishev, A.

Kim, Y. S.

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Kleiner, V.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Koppens, F. H.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Kretinin, A. V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Kucharczyk, R.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

Kumar, A.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

Lagutchev, A.

Lakowicz, J. R.

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[PubMed]

Y. Chen, D. Zhang, L. Zhu, R. Wang, P. Wang, H. Ming, R. Badugu, and J. R. Lakowicz, “Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures,” Optica 1(6), 407–413 (2014).
[PubMed]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Laroche, M.

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

Lee, B. J.

B. J. Lee and Z. M. Zhang, “Indirect measurements of coherent thermal emission from a truncated photonic crystal structure,” J. Thermophysics and Heat Transfer 23, 9–17 (2009).

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy,” Opt. Lett. 33(3), 204–206 (2008).
[PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129, 17 (2006).

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Liang, X.

Lin, S. Y.

M. L. Hsieh, J. Bur, Y. S. Kim, and S. Y. Lin, “Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal,” Opt. Lett. 38(6), 911–913 (2013).
[PubMed]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

Liu, J.

Liu, M. K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Loizeau, A.

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104, 208–216 (2007).

Low, T.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Ma, Q.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

Malis, O.

Marquier, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

Marton, C. H.

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Ming, H.

Miyazaki, H. T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Molesky, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(Suppl 1), A96–A110 (2013).
[PubMed]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).

Mulet, J. P.

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

Mulet, J.-P.

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[PubMed]

Nazemifard, N.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Ni, B.

P. Ben-Abdallah and B. Ni, “Single-defect bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Novoselov, K. S.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

H. Hajian, A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials,” J. Opt. Soc. Am. B 34(7), D29 (2017).

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Pardo, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

Pelouard, J. L.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[PubMed]

Pendharker, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Polini, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Poursoti, Z.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Pramanik, S.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Premaratne, M.

Principi, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Rukhlenko, I. D.

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399 (2004).

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).

Shalaev, V. M.

Shen, S.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).

Soljacic, M.

Soltani-Vala, A.

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).

Starko-Bowes, R.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Steeslicka, M.

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Tan, W.

W. Wang and W. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132, 36 (2014).

W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).

Tan, W. g.

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

Taniguchi, T.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).

Thiemens, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Thundat, T.

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

Tischler, J. G.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Veronis, G.

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

Vignale, G.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

Wagner, M.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Wang, L. P.

Wang, P.

Wang, R.

Wang, W.

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

W. Wang and W. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132, 36 (2014).

W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).

Watanabe, K.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

Xiao, F.

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

Yariv, A.

Yeh, P.

Yeng, Y. X.

Yu, Z.

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399 (2004).

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Zhang, D.

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings,” Opt. Express 25(7), 7791–7796 (2017).
[PubMed]

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106, 1025 (2017).

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(Suppl 2), A126–A135 (2011).
[PubMed]

B. J. Lee and Z. M. Zhang, “Indirect measurements of coherent thermal emission from a truncated photonic crystal structure,” J. Thermophysics and Heat Transfer 23, 9–17 (2009).

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy,” Opt. Lett. 33(3), 204–206 (2008).
[PubMed]

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129, 17 (2006).

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).

Zhao, B.

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106, 1025 (2017).

B. Zhao and Z. M. Zhang, “Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings,” Opt. Express 25(7), 7791–7796 (2017).
[PubMed]

Zhao, Y.

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

Zhu, L.

Zhu, S.-E.

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

Zhu, W.

Acc. Chem. Res. (1)

S. Dutta Choudhury, R. Badugu, and J. R. Lakowicz, “Directing Fluorescence with Plasmonic and Photonic Structures,” Acc. Chem. Res. 48(8), 2171–2180 (2015).
[PubMed]

ACS Photonics (1)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4, 1371 (2017).

Appl. Phys. Lett. (8)

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).

Z. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2009).

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-Dimensional Photonic Crystal Emitter for Thermal Photovoltaic Power Generation,” Appl. Phys. Lett. 83, 380 (2003).

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85, 3399 (2004).

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92, 021117 (2008).

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87, 071904 (2005).

Int. J. Heat Mass Transfer (1)

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106, 1025 (2017).

J. Appl. Phys. (4)

P. Ben-Abdallah and B. Ni, “Single-defect bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005).

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal,” J. Appl. Phys. 114, 033102 (2013).

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100, 063529 (2006).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).

J. Heat Transfer (4)

F. Marquier, M. Laroche, R. Carminati, and J.-J. Greffet, “Anisotropic polarized emission of a doped silicon lamellar grating,” J. Heat Transfer 129, 11 (2007).

W. Wang, C. Fu, and W. Tan, “Thermal radiative properties of a SiC grating on a photonic crystal,” J. Heat Transfer 135, 091504 (2013).

B. J. Lee and Z. M. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129, 17 (2006).

W. Wang, Y. Zhao, W. g. Tan, and C. Fu, “Thermal Radiative Properties of a Two-Dimensional Silicon Carbide Grating Mediated With a Photonic Crystal,” J. Heat Transfer 137, 091022 (2015).

J. Opt. (1)

S. Pendharker, H. Hu, S. Molesky, R. Starko-Bowes, Z. Poursoti, S. Pramanik, N. Nazemifard, R. Fedosejevs, T. Thundat, and Z. Jacob, “Thermal graphene metamaterials and epsilon-near-zero high temperature plasmonics,” J. Opt. 19, 055101 (2017).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Ra. (1)

K. Joulain and A. Loizeau, “Coherent thermal emission by microstructured waveguides,” J. Quant. Spectrosc. Ra. 104, 208–216 (2007).

J. Quant. Spectrosc. Radiat. Transf. (1)

W. Wang and W. Tan, “Thermal radiative properties of a photonic crystal structure sandwiched by SiC gratings,” J. Quant. Spectrosc. Radiat. Transf. 132, 36 (2014).

J. Thermophysics and Heat Transfer (1)

B. J. Lee and Z. M. Zhang, “Indirect measurements of coherent thermal emission from a truncated photonic crystal structure,” J. Thermophysics and Heat Transfer 23, 9–17 (2009).

Nano Lett. (2)

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system,” Nano Lett. 15(5), 3172–3180 (2015).
[PubMed]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9(8), 2909–2913 (2009).
[PubMed]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44 (2015).

Nanoscale (1)

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9(43), 16652–16660 (2017).
[PubMed]

Nat. Commun. (2)

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5, 5221 (2014).
[PubMed]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[PubMed]

Nat. Mater. (2)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[PubMed]

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. Koppens, “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421–425 (2015).
[PubMed]

Nat. Nanotechnol. (2)

S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S.-E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682–686 (2015).
[PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[PubMed]

Nat. Photonics (2)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6, 535–539 (2012).

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3, 658 (2009).

Nature (2)

J. J. Greffet, “Applied physics: Controlled incandescence,” Nature 478(7368), 191–192 (2011).
[PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[PubMed]

Opt. Commun. (1)

H. Hajian, A. Soltani-Vala, and M. Kalafi, “Controlled switching of surface waves in 1D photonic crystals by a thin nonlinear cap layer,” Opt. Commun. 283, 4847 (2010).

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).

Phys. Rev. B (4)

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69, 155412 (2004).

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243 (2000).

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76, 045427 (2007).

Phys. Rev. Lett. (2)

R. Carminati and J. J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660 (1999).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Sci. Rep. (1)

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Science (1)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[PubMed]

Surf. Sci. Rep. (2)

M. Steeslicka, R. Kucharczyk, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, and S. G. Davison, “Localised electronic states in semiconductor superlattices,” Surf. Sci. Rep. 47, 93 (2002).

A. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59 (2005).

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

P. Yeh, Optical Waves in Layered Media (Wiley, New Jersey, 1988).

Seehttp:// www.lumerical.com/tcad-products/fdtd/for Lumerical Solutions, Inc.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Panels (a) and (b) illustrate a film of hBN with thickness t (placed in z=0) that is transferred onto a Ge substrate and onto a 1D PC, respectively. As shown in panel (b), the hBN-based 1D PC comprises alternating layers of KBr and Ge layers with the thicknesses d 1 and d z and a spacer layer of Ge with the thickness d s . Panel (c) shows a three dimensional representation of the design and its coherent thermal emission at θ=0 and θ= 45 o .
Fig. 2
Fig. 2 (a) and (b) illustrate real and imaginary parts of ε t and ε z of hBN within entire mid-IR region. Panels (c), (d), and (e), respectively, illustrate the dispersion of HPPs supported by 300 nm, 500 nm, and 1 μm films of hBN within the wavelength range of our interest. 6.2 μm to 7.3 μm is the RS-II region in which hBN shows hyperbolic response of the second type.
Fig. 3
Fig. 3 Panels (a) and (b), respectively, show projected band structure of the 1D PC for TM and TE polarizations; the white and aqua regions depict photonic bandgaps and allowed the bands of the 1D PC. In these panels, dashed-dotted black ( t=300 nm,  d s =1.08 μm), dotted red ( t=500 nm,  d s =1.03 μm) and dashed blue ( t=1 μm,  d s =900 nm) curves illustrate the coupled phononic-photonic modes (Tamm phonons) supported by the hBN-based 1D PC with different thickness of hBN films and the spacer layer. Solid black lines also indicate edges of the RS-II region of hBN which is placed within 6.2 μm to 7.3 μm. For illustrative purposes, magnified version of panels (a) and (b) are also illustrated in panels (c) and (d), respectively.
Fig. 4
Fig. 4 Spectral-directional emissivity of the hBN-based 1D PC with t=300 nm and d s =1.08 μm for TM [panel (a)] and TE [panel (b)] polarizations. Angular distribution of the thermal emission of the structure at λ=7.07 μm and λ=7 μm are illustrated in panels (c), (d) [TM] and (e) [TE].
Fig. 5
Fig. 5 Thermal emission of the 1D hBN-based PC with t=300 nm for different thicknesses of the Ge spacer layer ( d s ). The results are illustrated for three critical angles and both polarizations; i.e. θ=0 [panel (a)], θ= 30 o [TE panel (b) and TM panel (d)] and θ= 60 o [TE panel (c) and TM panel (e)].
Fig. 6
Fig. 6 Panels (a) and (b) respectively show TM and TE spectral-directional emissivity of the hBN-based 1D PC with t=500 nm and d s =1.03 μm. Angular distribution of thermal emission of the structure at λ=6.872 μm and λ=6.8 μm are illustrated in panels (c), (d) [TM] and (e) [TE].
Fig. 7
Fig. 7 Thermal emission of the 1D hBN-based PC with t=500 nm for the different thicknesses of the Ge spacer layer ( d s ). The results are illustrated for three critical angles and both polarizations; i.e. θ=0 [panel (a)], θ= 30 o [TE panel (b) and TM panel (d)] and θ= 60 o [TE panel (c) and TM panel (e)].
Fig. 8
Fig. 8 TM [panel (a)] and TE [panel (b)] spectral-directional thermal emission for the hBN-based 1D PC with t=500 nm and the optimal value of thickness of the Ge spacer layer; i.e. d s =1.05 μm.
Fig. 9
Fig. 9 Spectral-directional emissivity of the hBN-based 1D PC with t=1 μm and d s =0.9 μm for TM [panel (a)] and TE [panel (b)] polarizations. Angular distribution of thermal emission of the structure at λ=6.563 μm and λ=6.422 μm are illustrated in panels (c), (d) [TM] and (e) [TE].
Fig. 10
Fig. 10 Thermal emission of the 1D hBN-based PC with t=1 μm for different thicknesses of the Ge spacer layer ( d s ). The results are illustrated for three critical angles and both polarizations; i.e. θ=0 [panel (a)], θ= 30 o [TE panel (b) and TM panel (d)] and θ= 60 o [TE panel (c) and TM panel (e)].
Fig. 11
Fig. 11 Panels (a) and (b), respectively, present TM and TE spectral-directional thermal emission of t=1 μm hBN-based 1D PC with d s =0.95 μm as the optimal value of thickness of the Ge spacer layer.
Fig. 12
Fig. 12 Panels (a) and (c), respectively, illustrate normalized |E| and |H| mode profiles of a Tamm phonon supported by t=1 μm hBN-based 1D PC with d s =0.95 μm at θ=0 and λ=6.69 μm. Panels (b) and (d) show the corresponding line plots of the normalized |E| and |H|.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H y (z)={ a e q a (zt/2) ,z>t/2 h 1 e q h,TM z + h 2 e q h,TM z ,t/2zt/2 s e q s (z+t/2) ,z<t/2 .
tanh( q h,TM t)= Γ a + Γ s ' 1+ Γ a Γ s ' .
ε m = ε ,m [1+ ω LO,m 2 ω TO,m 2 ω TO,m 2 ω 2 iω Γ m ],m=t,z.
cos( K B d)=cosh( q 1 d 1 )cosh( q 2 d 2 )+( F 1,TE,TM F 2,TE,TM + F 1,TE,TM F 2,TE,TM )sinh( q 1 d 1 )sinh( q 2 d 2 )/2
H y (z)={ a e q a (zt/2) ,z>t/2 h 1 e q h,TM z + h 2 e q h,TM z ,t/2zt/2 s 1 e q s (z+t/2) + s 2 e q s (z+t/2) ,(t/2+ d s )z<t/2 p{sinh( q 1 [z+(t/2+ d s )])+ γ TM cosh( q 1 [z+(t/2+ d s )]},z<(t/2+ d s )
tanh( q h,TM t)= Γ s Γ a 1 Γ s Γ a .
γ TM = F TM e i K B d sinh( q 2 d 2 )+sinh( q 1 d 1 ) e i K B d cosh( q 2 d 2 )cosh( q 1 d 1 )
tanh( q h,TE t)= X 4 X 5 X 4 + X 5 .

Metrics