Abstract

Dielectric components are essential for laser applications. Chirped mirrors are applied to compress the temporal pulse broadening crucial in the femtosecond regime. However, the design sensitivity and the electric field distribution of chirped mirrors is complex often resulting in low laser induced damage resistances. An approach is presented to increase the damage resistance of pulse compressing mirrors up to 190% in the NIR spectral range. Layers with critical high field intensity of a binary mirror design are substituted by ternary composites and quantized nanolaminates, respectively. The deposition process is improved by an in situ technique monitoring the phase of reflectance.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers

Marine Chorel, Thomas Lanternier, Éric Lavastre, Nicolas Bonod, Bruno Bousquet, and Jérôme Néauport
Opt. Express 26(9) 11764-11774 (2018)

Quantizing nanolaminates as versatile materials for optical interference coatings

Morten Steinecke, Holger Badorreck, Marco Jupé, Thomas Willemsen, Liu Hao, Lars Jensen, and Detlev Ristau
Appl. Opt. 59(5) A236-A241 (2020)

Enhancement of laser-induced damage threshold in chirped mirrors by electric field reallocation

Simas Melnikas, Tomas Tolenis, Linas Smalakys, Gintarė Batavičiūtė, Andrius Melninkaitis, and Simonas Kičas
Opt. Express 25(22) 26537-26545 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16(13), 9739–9745 (2008).
    [Crossref] [PubMed]
  2. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [Crossref] [PubMed]
  3. V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).
  4. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
    [Crossref] [PubMed]
  5. T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
    [Crossref]
  6. D. Ristau, Laser-Induced Damage in Optical Materials (CRC, 2014).
  7. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
    [Crossref] [PubMed]
  8. M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45(7), 1502–1506 (2006).
    [Crossref] [PubMed]
  9. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
    [Crossref] [PubMed]
  10. M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
    [Crossref]
  11. M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
    [Crossref]
  12. H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” in Proceedings of the IEEE, (IEEE, 1982), pp. 13–25.
  13. T. Willemsen, M. Jupé, L. Gallais, D. Tetzlaff, and D. Ristau, “Tunable optical properties of amorphous Tantala layers in a quantizing structure,” Opt. Lett. 42(21), 4502–4505 (2017).
    [Crossref] [PubMed]
  14. T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
    [Crossref]
  15. S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
    [Crossref] [PubMed]
  16. ISO 21254, “Lasers and laser-related equipment – Test methods for laser-induced damage threshold,” (2011).
  17. S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
    [Crossref]
  18. T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
    [Crossref]
  19. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
    [Crossref]
  20. M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
    [Crossref] [PubMed]
  21. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984).
    [Crossref] [PubMed]
  22. M. Cevro, “Ion-beam sputtering of (ta2o5) x (sio2) composite thin films,” Thin Solid Films 258(1–2), 91–103 (1995).
    [Crossref]
  23. C. Kittel, Introduction to Solid State Physics (John Wiley, 1966).
  24. P. S. Zory, Quantum Well Lasers (Academic, 1993).
  25. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com
  26. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
    [Crossref] [PubMed]
  27. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
    [Crossref] [PubMed]
  28. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

2015 (1)

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

2014 (1)

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

2012 (1)

2011 (4)

2008 (1)

2007 (2)

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

2006 (2)

1997 (1)

1995 (1)

M. Cevro, “Ion-beam sputtering of (ta2o5) x (sio2) composite thin films,” Thin Solid Films 258(1–2), 91–103 (1995).
[Crossref]

1994 (1)

1993 (1)

M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
[Crossref] [PubMed]

1984 (1)

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Amotchkina, T. V.

Angelov, I. B.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Arsenault, C. J.

M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
[Crossref] [PubMed]

Beaudoin, M.

M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
[Crossref] [PubMed]

Binhammer, T.

Cevro, M.

M. Cevro, “Ion-beam sputtering of (ta2o5) x (sio2) composite thin films,” Thin Solid Films 258(1–2), 91–103 (1995).
[Crossref]

Commandré, M.

Drazdys, R.

Ehlers, H.

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[Crossref] [PubMed]

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[Crossref]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[Crossref] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

Ell, R.

Ferencz, K.

Fu, X.

Gallais, L.

Geerke, P.

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

Görtz, B.

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Gross, T.

Gyamfi, M.

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

Harth, A.

Haus, H. A.

Heine, C.

Heinrich, K.

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[Crossref]

Jensen, L.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[Crossref] [PubMed]

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

Jupe, M.

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

Jupé, M.

T. Willemsen, M. Jupé, L. Gallais, D. Tetzlaff, and D. Ristau, “Tunable optical properties of amorphous Tantala layers in a quantizing structure,” Opt. Lett. 42(21), 4502–4505 (2017).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[Crossref] [PubMed]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

Kärtner, F. X.

Keller, U.

Kellermann, T.

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

Kicas, S.

Kim, J.

Krausz, F.

Kroemer, H.

H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” in Proceedings of the IEEE, (IEEE, 1982), pp. 13–25.

Lappschies, M.

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45(7), 1502–1506 (2006).
[Crossref] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

Mangote, B.

Matuschek, N.

Mažule, L.

Melninkaitis, A.

Mende, M.

Meunier, M.

M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
[Crossref] [PubMed]

Mirauskas, J.

Morf, R.

Morgner, U.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16(13), 9739–9745 (2008).
[Crossref] [PubMed]

Pervak, V.

Rausch, S.

Razskazovskaya, O.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Ristau, D.

T. Willemsen, M. Jupé, L. Gallais, D. Tetzlaff, and D. Ristau, “Tunable optical properties of amorphous Tantala layers in a quantizing structure,” Opt. Lett. 42(21), 4502–4505 (2017).
[Crossref] [PubMed]

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[Crossref] [PubMed]

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[Crossref]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[Crossref] [PubMed]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45(7), 1502–1506 (2006).
[Crossref] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
[Crossref] [PubMed]

Rudolph, W.

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

Scheuer, V.

Schibli, T.

Schlichting, S.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[Crossref]

T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011).
[Crossref] [PubMed]

Sirutkaitis, V.

Spielmann, C.

Starke, K.

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

Szipöcs, R.

Tatian, B.

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Tetzlaff, D.

Tikhonravov, A. V.

Tilsch, M.

Tolenis, T.

Trubetskov, M.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Trubetskov, M. K.

Tschudi, T.

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Vodopyanov, K. L.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Willemsen, T.

T. Willemsen, M. Jupé, L. Gallais, D. Tetzlaff, and D. Ristau, “Tunable optical properties of amorphous Tantala layers in a quantizing structure,” Opt. Lett. 42(21), 4502–4505 (2017).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Fourier-transform spectral interferometry for in situ group delay dispersion monitoring of thin film coating processes,” Opt. Express 24(20), 22516–22527 (2016).
[Crossref] [PubMed]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

Zerrad, M.

Adv. Opt. Technol. (1)

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3(1), 55–63 (2014).

Appl. Opt. (5)

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B Condens. Matter (1)

M. Beaudoin, M. Meunier, and C. J. Arsenault, “Blueshift of the optical band gap: Implications for the quantum confinement effect in a-Si:H/a-SiNx:H multilayers,” Phys. Rev. B Condens. Matter 47(4), 2197–2202 (1993).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Proc. SPIE (6)

T. Willemsen, S. Schlichting, M. Gyamfi, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites,” Proc. SPIE 10014, 100141Z (2016).
[Crossref]

M. Jupe, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Improvement in laser irradiation resistance of fs- dielectric optics using silica mixtures,” Proc. SPIE 6403, 64031A (2007).
[Crossref]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, D. Ristau, A. Melninkaitis, and W. Rudolph, “Mixed oxide coatings for advanced fs-laser applications,” Proc. SPIE 6720, 67200U (2007).
[Crossref]

T. Willemsen, P. Geerke, M. Jupé, L. Gallais, and D. Ristau, “Electronic quantization in dielectric nanolaminates,” Proc. SPIE 10014, 100140C (2016).
[Crossref]

S. Schlichting, K. Heinrich, H. Ehlers, and D. Ristau, “Online re-optimization as a powerful part of enhanced strategies in optical broadband monitoring,” Proc. SPIE 8168, 81681E (2011).
[Crossref]

T. Willemsen, S. Schlichting, T. Kellermann, M. Jupé, H. Ehlers, U. Morgner, and D. Ristau, “Precise fabrication of ultra violet dielectric dispersion compensating mirrors,” Proc. SPIE 9627, 96271U (2015).
[Crossref]

Thin Solid Films (1)

M. Cevro, “Ion-beam sputtering of (ta2o5) x (sio2) composite thin films,” Thin Solid Films 258(1–2), 91–103 (1995).
[Crossref]

Other (6)

C. Kittel, Introduction to Solid State Physics (John Wiley, 1966).

P. S. Zory, Quantum Well Lasers (Academic, 1993).

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com

ISO 21254, “Lasers and laser-related equipment – Test methods for laser-induced damage threshold,” (2011).

H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” in Proceedings of the IEEE, (IEEE, 1982), pp. 13–25.

D. Ristau, Laser-Induced Damage in Optical Materials (CRC, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Evolution of the optical gap plotted against the index of refraction for various ternary composites and nanolaminate sequences.
Fig. 2
Fig. 2 Single ternary composites layers and nanolaminate stacks are compared with respect to the laser induced damage threshold. The respective retrieved LIDT values are determined with a maximum error of ± 10%. Afterwards the values are decoupled from the electric field and index of refraction and are normalized to their maximum value summarized as Hrel.
Fig. 3
Fig. 3 Field intensities plotted against the optical design thicknesses. An initial binary Ta2O5-SiO2 design is analyzed, and the Ta2O5 layers affected by a maximum in field intensities are substituted by nanolaminate sequences and ternary composites, respectively.
Fig. 4
Fig. 4 Measured GDD spectra and transmittance scans for the manufactured chirped mirrors.
Fig. 5
Fig. 5 Field intensities plotted against the optical design thicknesses and measured GDD spectra for the manufactured additional chirped mirrors.
Fig. 6
Fig. 6 Enhancement of the LIDT with respect to a binary oxide Ta2O5-SiO2 chirped mirror. The initial binary design is represented by 100% and characterized by a LIDT of H = 0.17 J/cm2.

Tables (2)

Tables Icon

Table 1 Design parameters of the manufactured chirped mirrors. For every design the target points are kept constant with respect to the wavelength range Δλ = 100 nm (from 770 to 870 nm) and the GDD of −200 fs2.

Tables Icon

Table 2 Design parameters of the manufactured chirped mirrors. For every design the target points are kept constant with respect to the wavelength range Δλ = 100 nm (from 770 to 870 nm) and the GDD of −200 fs2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H rel = H F H H max F H max with F= n ref n 0 | E | 2
RSS= i n (GD D dsg ( λ i )GD D rev ( λ i )) 2

Metrics