Abstract

We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing

Cheng Pang, Hyungdae Bae, Ashwani Gupta, Kenneth Bryden, and Miao Yu
Opt. Express 21(19) 21829-21839 (2013)

Fiber-optic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications

Jia Liu, Pinggang Jia, Huixin Zhang, Xiaodan Tian, Hao Liang, Yingping Hong, Ting Liang, Wenyi Liu, and Jijun Xiong
Appl. Opt. 57(15) 4211-4215 (2018)

Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm

Wenhui Wang, Nan Wu, Ye Tian, Christopher Niezrecki, and Xingwei Wang
Opt. Express 18(9) 9006-9014 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
    [Crossref] [PubMed]
  2. M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
    [Crossref]
  3. W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
    [Crossref]
  4. H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
    [Crossref]
  5. S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
    [Crossref]
  6. A. Balčytis, D. Hakobyan, M. Gabalis, A. Žukauskas, D. Urbonas, M. Malinauskas, R. Petruškevičius, E. Brasselet, and S. Juodkazis, “Hybrid curved nano-structured micro-optical elements,” Opt. Express 24(15), 16988–16998 (2016).
    [Crossref] [PubMed]
  7. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006).
    [Crossref] [PubMed]
  8. C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829–21839 (2013).
    [Crossref] [PubMed]
  9. Y. Ge, M. Wang, and H. Yan, “Optical MEMS pressure sensor based on a mesa-diaphragm structure,” Opt. Express 16(26), 21746–21752 (2008).
    [Crossref] [PubMed]
  10. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
    [Crossref]
  11. W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic fabry-perot interferometer,” Opt. Lasers Eng. 52(1), 201–205 (2014).
    [Crossref]
  12. Y. Li and Z. Jiang, “An overview of reliability and failure mode analysis of Microelectromechanical Systems (MEMS),” in Handbook of Performability Engineering, K. B. Misra, ed. (Springer London, 2008).
  13. M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
    [Crossref]
  14. H. Kapels, T. Scheiter, C. Hierold, and R. Aigner, “Cavity pressure determination and leakage testing for sealed surface micromachined membranes: a novel on-wafer test method,” in Proceedings of The Eleventh International Workshop on MICRO Electro Mechanical Systems (Mems 98. IEEE 1998), pp. 550–555.
    [Crossref]
  15. J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
    [Crossref]
  16. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959).
  17. H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).
  18. H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
    [Crossref]
  19. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
    [Crossref] [PubMed]
  20. J. A. Dziuban, Bonding in Microsystem Technology (Springer Science & Business Media, 2007).

2016 (1)

2014 (3)

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic fabry-perot interferometer,” Opt. Lasers Eng. 52(1), 201–205 (2014).
[Crossref]

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

2013 (2)

C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829–21839 (2013).
[Crossref] [PubMed]

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

2012 (1)

2008 (1)

2007 (1)

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

2006 (1)

2004 (1)

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

2003 (1)

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

2002 (1)

W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
[Crossref]

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

1994 (1)

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

1993 (1)

M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
[Crossref]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Afshari, M.

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

Anderson, S. J.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Aref, S. H.

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

Bae, H.

Balcytis, A.

Barton, J. S.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Bergeron, C.

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Brasselet, E.

Bryden, K.

Cantrelle, A.

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

Chana, K. S.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Choi, H.

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Ding, Z.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

Esashi, M.

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Fasting, E. J.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Fielder, R. S.

W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
[Crossref]

Frazão, O.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

Gabalis, M.

Gander, M. J.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Ge, Y.

Gupta, A.

Hakobyan, D.

Henmi, H.

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Huff, M. A.

M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
[Crossref]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

Jiang, J.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
[Crossref] [PubMed]

Jones, J. D. C.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Jones, T. V.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Juodkazis, S.

Latifi, H.

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

Li, D.

Li, F.

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic fabry-perot interferometer,” Opt. Lasers Eng. 52(1), 201–205 (2014).
[Crossref]

Li, H.

Li, M.

Liu, K.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
[Crossref] [PubMed]

Liu, T.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
[Crossref] [PubMed]

Lobo-Ribeiro, A. B.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

Macpherson, W. N.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Malinauskas, M.

Meng, X.

Moen, A. S.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Nikolich, A. D.

M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
[Crossref]

Pang, C.

Petruškevicius, R.

Poppe, E. U.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Pulliam, W. J.

W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
[Crossref]

Qin, Z.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
[Crossref] [PubMed]

Reuben, R. L.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Roriz, P.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

Russler, P. M.

W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
[Crossref]

Santos, J. L.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

Schjølberghenriksen, K.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Schmidt, M. A.

M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
[Crossref]

Shoji, S.

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Shoji, Y.

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Simensen, C. J.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Simões, J. A.

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

Stevens, R.

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

Taklo, M. M. V.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Tofteberg, H. R.

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Tubel, P.

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

Urbonas, D.

Wang, M.

Wang, S.

Wang, W.

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic fabry-perot interferometer,” Opt. Lasers Eng. 52(1), 201–205 (2014).
[Crossref]

Wu, F.

Yan, H.

Yin, J.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, “A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency,” Opt. Express 20(16), 18117–18126 (2012).
[Crossref] [PubMed]

Yoshimi, K.

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Yu, M.

Zhang, Y.

Zibaii, M. I.

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

Zou, S.

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

Žukauskas, A.

IEEE Photonics Technol. Lett. (2)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13(9), 993–995 (2001).
[Crossref]

J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, Z. Qin, and Z. Ding, “Self-referenced residual pressure measurement method for fiber-optic pressure sensor chip,” IEEE Photonics Technol. Lett. 26(10), 957–960 (2014).
[Crossref]

IEEE Sens. J. (1)

M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[Crossref]

J. Biomed. Opt. (1)

P. Roriz, O. Frazão, A. B. Lobo-Ribeiro, J. L. Santos, and J. A. Simões, “Review of fiber-optic pressure sensors for biomedical and biomechanical applications,” J. Biomed. Opt. 18(5), 50903 (2013).
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

M. A. Huff, A. D. Nikolich, and M. A. Schmidt, “Design of sealed cavity microstructures formed by silicon wafer bonding,” J. Microelectromech. Syst. 2(2), 74–81 (1993).
[Crossref]

J. Micromech. Microeng. (1)

H. R. Tofteberg, K. Schjølberghenriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, and C. J. Simensen, “Wafer-level Au–Au bonding in the 350–450 °C temperature range,” J. Micromech. Microeng. 24(24), 084002 (2014).
[Crossref]

Opt. Commun. (1)

S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic fabry-perot interferometer,” Opt. Lasers Eng. 52(1), 201–205 (2014).
[Crossref]

Proc. SPIE (2)

W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature, high-bandwidth, fiber optic, MEMS pressure-sensor technology for turbine-engine component testing,” Proc. SPIE 4578, 229–238 (2002).
[Crossref]

H. Choi, A. Cantrelle, C. Bergeron, and P. Tubel, “Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,” Proc. SPIE 5589, 337–344 (2004).
[Crossref]

Sensor. Actuat. A-Phys. (1)

H. Henmi, S. Shoji, Y. Shoji, K. Yoshimi, and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensor. Actuat. A-Phys. 43(1), 243–248 (1994).

Other (4)

J. A. Dziuban, Bonding in Microsystem Technology (Springer Science & Business Media, 2007).

H. Kapels, T. Scheiter, C. Hierold, and R. Aigner, “Cavity pressure determination and leakage testing for sealed surface micromachined membranes: a novel on-wafer test method,” in Proceedings of The Eleventh International Workshop on MICRO Electro Mechanical Systems (Mems 98. IEEE 1998), pp. 550–555.
[Crossref]

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959).

Y. Li and Z. Jiang, “An overview of reliability and failure mode analysis of Microelectromechanical Systems (MEMS),” in Handbook of Performability Engineering, K. B. Misra, ed. (Springer London, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Configuration of a fiber-optic MEMS pressure sensor.
Fig. 2
Fig. 2 Conceptual illustration of the relationship between cavity length and external pressure and the calculate process of residual pressure in theory
Fig. 3
Fig. 3 (a) Samples of optical MEMS F-P pressure sensors with two bonding processes. (b) Sensor chip array of batch 2 that produced by Au-Au thermal-compress bonding. (c)Sensor chip array of batch 1 that produced by anodic bonding.
Fig. 4
Fig. 4 Setup for residual pressure measurement of a fiber-optic MEMS FPI pressure sensor
Fig. 5
Fig. 5 The relationship between setting external pressure and demodulated absolute phase of (a) sensor 1-A, (b) sensor 1-B, (c) sensor 2-A, and (d) sensor 2-B at 273K and 323K.
Fig. 6
Fig. 6 The two curves described in Eq. (9) of (a)sensor 1-A,(b)sensor 1-B,(c)sensor 2-A, and (d)sensor 2-B (inset is the enlarge view about the intersection point area).
Fig. 7
Fig. 7 50 times residual pressure measurement results of the four sensors

Tables (1)

Tables Icon

Table 1 Residual pressure measurement results

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω= ( a 2 r 2 ) 2 ( P E P R ) 64D( 1+ξ ) ,
ω 1 = ( a 2 r 2 ) 2 ( P E1 P R1 ) 64 D 1 ( 1+ ξ 1 ) ,
ω 2 = ( a 2 r 2 ) 2 ( P E2 P R2 ) 64 D 2 ( 1+ ξ 2 ) ,
P R V=nRT,
P R2 = P R1 T 2 / T 1 .
P R1 = P E1 64 D 1 ( 1+ ξ 1 ) ( a 2 r 2 ) 2 ω eq ,
P R2 = P E2 64 D 2 ( 1+ ξ 2 ) ( a 2 r 2 ) 2 ω eq .
P R1 =( P E2 P E1 ) T 1 T 2 T 1 64 ω eq ( a 2 r 2 ) 2 ( D 2 D 1 + D 2 ξ 2 D 1 ξ 1 ) T 1 T 2 T 1 .
P R1 = P E1 , P R1 =( P E2 P E1 ) T 1 T 2 T 1 (when ω eq =0),
h=h α g ( T 2 T 1 ),
P R1 = h S 2 T 1 T 2 T 1 = h α g T 1 S 2 ,

Metrics