Abstract

A differential pulse code modulation (DPCM) based digital mobile fronthaul architecture is proposed and experimentally demonstrated. By using a linear predictor in the DPCM encoding process, the quantization noise can be effectively suppressed and a prediction gain of 7~8 dB can be obtained. Experimental validation is carried out with a 20 km 15-Gbaud/λ 4-level pulse amplitude modulation (PAM4) intensity modulation and direct detection system. The results verify the feasibility of supporting 163, 122, 98, 81 20-MHz 4, 16, 64, 256 QAM based antenna-carrier (AxC) containers with only 3, 4, 5, 6 quantization bits at a sampling rate of 30.72MSa/s in LTE-A environment. Further increasing the number of quantization bits to 8 and 9, 1024 quadrature amplitude modulation (1024 QAM) and 4096 QAM transmission can be realized with error vector magnitude (EVM) lower than 1% and 0.5%, respectively. The supported number of AxCs in the proposed DPCM-based fronthaul is increased and the EVM is greatly reduced compared to the common public radio interface (CPRI) based fronthaul that uses pulse code modulation. Besides, the DPCM-based fronthaul is also experimentally demonstrated to support universal filtered multicarrier signal that is one candidate waveform for the 5th generation mobile systems.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format

Haibo Li, Rong Hu, Qi Yang, Ming Luo, Zhixue He, Peng Jiang, Yongpiao Liu, Xiang Li, and Shaohua Yu
Opt. Express 25(1) 1-9 (2017)

References

  • View by:
  • |
  • |
  • |

  1. China Mobile Research Institute, “C-RAN: the road towards green RAN,” whitepaper v. 2.5, (2011).
  2. T. Pfeiffer, “Next generation mobile fronthaul architectures,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.7.
    [Crossref]
  3. X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.2.
    [Crossref]
  4. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI-equivalent data rate in a single 10-GHz-bandwidth IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.3.
    [Crossref]
  5. B. G. Kim, K. Tanaka, T. Kobayashi, A. Bekkali, K. Nishimura, H. Kim, M. Suzuki and Y. C. Chung, “Transmission Experiment of LTE Signals by IF-over-Fiber Using Commercial Base Station and Deployed Optical Fibers.” in Proceedings of European Conference on Optical Communications (2016), paper 1–3.
  6. M. Sung, C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique,” Opt. Express 23(23), 29615–29624 (2015).
    [Crossref] [PubMed]
  7. J. Wang, C. Liu, J. Zhang, M. Zhu, M. Xu, F. Lu, L. Cheng, and G.-K. Chang, “Nonlinear inter-band subcarrier intermodulations of multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightwave Technol. 34(17), 4089–4103 (2016).
    [Crossref]
  8. C. P. R. I. Specification, V7.0, “Common Public Radio Interface (CPRI); Interface Specificationss,” (2015).
  9. T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” J. Opt. Commun. Netw. 7(11), B38–B45 (2015).
    [Crossref]
  10. eCPRI Specification, V1.0, “eCPRI 1.0 specification,” (2017).
  11. S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
    [Crossref]
  12. L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  13. J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, and G. K. Chang, “Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals,” J. Opt. Commun. Netw. 9(2), A233–A244 (2017).
    [Crossref]
  14. H. Li, R. Hu, Q. Yang, M. Luo, Z. He, P. Jiang, Y. Liu, X. Li, and S. Yu, “Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format,” Opt. Express 25(1), 1–9 (2017).
    [Crossref] [PubMed]
  15. M. Xu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “Fast Statistical Estimation in Highly Compressed Digital RoF Systems for Efficient 5G Wireless Signal Delivery,” inProceedings of Optical Fiber Communication Conference (2017), paper M3E.7.
    [Crossref]
  16. S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
    [Crossref]
  17. J. Lorca and L. Cucala, “Lossless compression technique for the fronthaul of LTE/LTE-advanced cloud-RAN architectures,” in Proceedings of IEEE 14th Int. Symp. Workshops World Wireless (2013).
    [Crossref]
  18. K. F. Nieman and B. L. Evans, “Time-domain compression of complex baseband LTE signals for cloud radio access networks,” in Proceedings of IEEE Global Conf. Signal Inf. Process (2013), pp. 1198–1201.
    [Crossref]
  19. B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
    [Crossref]
  20. R. F. W. Coates, Sampling and Pulse Code Modulation (Macmillan Education, 1982).
  21. S. Hyakin, Communication Systems, 4th ed. (Wiley, 2000).
  22. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
    [Crossref]
  23. S. M. Kay, “Modern Spectral Estimation: Theory and Application,” Prentice-Hall, Englewood Cliffs, (1988).
  24. S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
    [Crossref]
  25. N. S. Jayant and P. Noll, Digital Coding of Waveforms (Prentice-Hall, 1984).
  26. L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
    [Crossref]
  27. 3GPP TS 36.104 V12.6.0 (2014–12).
  28. M. Xu, F. Lu, J. Wang, L. Cheng, D. Guidotti, and G.-K. Chang, “Key technologies for next generation digital RoF mobile fronthaul with statistical data compression and multiband modulation,” J. Lightwave Technol. 35(17), 3671–3679 (2017).
    [Crossref]

2017 (3)

2016 (1)

2015 (2)

2014 (4)

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
[Crossref] [PubMed]

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

2013 (1)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

1982 (1)

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

Bi, M.

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

Brink, S.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Cao, W.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Cassiau, N.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Chang, G. K.

Chang, G.-K.

Chen, X.

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

Chen, Y.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Cheng, L.

Cho, S. H.

Chung, H. S.

Coelho, D.

Cucala, L.

J. Lorca and L. Cucala, “Lossless compression technique for the fronthaul of LTE/LTE-advanced cloud-RAN architectures,” in Proceedings of IEEE 14th Int. Symp. Workshops World Wireless (2013).
[Crossref]

Dryjanski, M.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Eged, B.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Evans, B. L.

K. F. Nieman and B. L. Evans, “Time-domain compression of complex baseband LTE signals for cloud radio access networks,” in Proceedings of IEEE Global Conf. Signal Inf. Process (2013), pp. 1198–1201.
[Crossref]

Festag, A.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Gaspar, I.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Guidotti, D.

Guo, B.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Han, C.

He, Z.

Hong, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Hu, R.

Jang, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Jiang, P.

Jo, G.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Jung, J.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Jung, P.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Kasparick, M.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Ktenas, D.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Lee, J. H.

Li, H.

Li, X.

Liu, C.

Liu, L.

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

Liu, Y.

Lloyd, S. P.

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

Lorca, J.

J. Lorca and L. Cucala, “Lossless compression technique for the fronthaul of LTE/LTE-advanced cloud-RAN architectures,” in Proceedings of IEEE 14th Int. Symp. Workshops World Wireless (2013).
[Crossref]

Lu, F.

Luo, M.

Ma, X.

Mendes, L.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Michailow, N.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Nieman, K. F.

K. F. Nieman and B. L. Evans, “Time-domain compression of complex baseband LTE signals for cloud radio access networks,” in Proceedings of IEEE Global Conf. Signal Inf. Process (2013), pp. 1198–1201.
[Crossref]

Park, B.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

Park, S.-H.

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

Pessoa, L. M.

Pfeiffer, T.

Pietrzyk, S.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Sahin, O.

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

Salgado, H. M.

Samardzija, D.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Schaich, F.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Shamai Shitz, S.

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

Simeone, O.

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

Sung, M.

Tao, A.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Tavares, J. S.

Vago, P.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Wang, J.

Wiedmann, F.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Wild, T.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Wunder, G.

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

Xiao, S.

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

Xu, M.

Yang, Q.

Ying, K.

Yu, S.

Yu, Z.

Zhang, J.

Zhang, L.

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

Zhu, M.

Bell Labs Tech. J. (1)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A signal compression on the CPRI interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

IEEE Commun. Mag. (1)

G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag. 52(2), 97–105 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photonics Technol. Lett. 26(24), 2484–2487 (2014).
[Crossref]

IEEE Signal Process. Mag. (1)

S.-H. Park, O. Simeone, O. Sahin, and S. Shamai Shitz, “Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory,” IEEE Signal Process. Mag. 31(6), 69–79 (2014).
[Crossref]

IEEE Trans. Inf. Theory (1)

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (2)

Opt. Express (3)

Other (16)

N. S. Jayant and P. Noll, Digital Coding of Waveforms (Prentice-Hall, 1984).

L. Zhang, S. Xiao, M. Bi, L. Liu, and X. Chen, “FFT-based universal filtered multicarrier technology for low overhead and agile datacenter interconnect,” in Proceedings of IEEE ICTON (2016), paper Tu.P.3.
[Crossref]

3GPP TS 36.104 V12.6.0 (2014–12).

C. P. R. I. Specification, V7.0, “Common Public Radio Interface (CPRI); Interface Specificationss,” (2015).

S. M. Kay, “Modern Spectral Estimation: Theory and Application,” Prentice-Hall, Englewood Cliffs, (1988).

R. F. W. Coates, Sampling and Pulse Code Modulation (Macmillan Education, 1982).

S. Hyakin, Communication Systems, 4th ed. (Wiley, 2000).

J. Lorca and L. Cucala, “Lossless compression technique for the fronthaul of LTE/LTE-advanced cloud-RAN architectures,” in Proceedings of IEEE 14th Int. Symp. Workshops World Wireless (2013).
[Crossref]

K. F. Nieman and B. L. Evans, “Time-domain compression of complex baseband LTE signals for cloud radio access networks,” in Proceedings of IEEE Global Conf. Signal Inf. Process (2013), pp. 1198–1201.
[Crossref]

M. Xu, X. Liu, N. Chand, F. Effenberger, and G. K. Chang, “Fast Statistical Estimation in Highly Compressed Digital RoF Systems for Efficient 5G Wireless Signal Delivery,” inProceedings of Optical Fiber Communication Conference (2017), paper M3E.7.
[Crossref]

China Mobile Research Institute, “C-RAN: the road towards green RAN,” whitepaper v. 2.5, (2011).

T. Pfeiffer, “Next generation mobile fronthaul architectures,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.7.
[Crossref]

X. Liu, N. Chand, F. Effenberger, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” inProceedings of Optical Fiber Communication Conference (2015), paper M2J.2.
[Crossref]

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “CPRI-compatible efficient mobile fronthaul transmission via equalized TDMA achieving 256 Gb/s CPRI-equivalent data rate in a single 10-GHz-bandwidth IM-DD channel,” inProceedings of Optical Fiber Communication Conference (2016), paper M1H.3.
[Crossref]

B. G. Kim, K. Tanaka, T. Kobayashi, A. Bekkali, K. Nishimura, H. Kim, M. Suzuki and Y. C. Chung, “Transmission Experiment of LTE Signals by IF-over-Fiber Using Commercial Base Station and Deployed Optical Fibers.” in Proceedings of European Conference on Optical Communications (2016), paper 1–3.

eCPRI Specification, V1.0, “eCPRI 1.0 specification,” (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram for C-RAN architecture with digital mobile fronthaul and analog mobile fronthaul.
Fig. 2
Fig. 2 DPCM based digital mobile fronthaul.
Fig. 3
Fig. 3 Diagram for the basic DPCM scheme (Type I).
Fig. 4
Fig. 4 Diagram for the DPCM scheme with reduced quantization noise accumulation (Type II).
Fig. 5
Fig. 5 Diagram for the enhanced DPCM with a linear predictor (Type III).
Fig. 6
Fig. 6 Error distribution of 64QAM-OFDM signals using (a) Type I, (b) Type II, and (c) Type III, with (d) as a legend for the previous subfigures.
Fig. 7
Fig. 7 Experimental setup. Inset (a) equalized eye diagram at the receiver side, (b) DSP flow of OFDM transceivers, (c) DSP flow of UFMC transceivers, (d) power spectrum of one LTE-A channel, (e) power spectrum of one UFMC channel, (f) PAPR of OFDM and UFMC signals.
Fig. 8
Fig. 8 Prediction gain in terms of percentage of training overhead.
Fig. 9
Fig. 9 (a) EVM performance in terms of QBs with different training overhead. (b) EVM performance in terms of QBs with different prediction order.
Fig. 10
Fig. 10 EVM performance in terms of the number of QBs.
Fig. 11
Fig. 11 EVM performance as a function of the RoP with the DPCM based fronthaul.
Fig. 12
Fig. 12 EVM performance versus the RoP for the DPCM encoded UFMC based fronthaul.
Fig. 13
Fig. 13 EVM performance in terms of RoP for the fronthaul employed the PCM and DPCM.

Tables (4)

Tables Icon

Table 1 An example employed in all three presented types of DPCM schemes

Tables Icon

Table 2 System parameters.

Tables Icon

Table 3 Supported AxC containers and required QBs of DPCM based fronthaul.

Tables Icon

Table 4 Comparison of analog fronthaul and digital fronthaul based on CPRI, delta-sigma modulation, PCM + μ-law/A-law and DPCM.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

e [ n ] = s [ n ] s [ n 1 ] .
r [ n ] = y [ n ] + r [ n 1 ] .
e [ n ] = s [ n ] s q [ n 1 ] .
s q [ n ] = s q [ n 1 ] + e q [ n ] .
e q [ n ] = e [ n ] + q [ n ] .
e q [ n ] = s [ n ] s q [ n 1 ] + q [ n ] .
s q [ n ] = s q [ n 1 ] + s [ n ] s q [ n 1 ] + q [ n ] = s [ n ] + q [ n ] .
s ^ [ n ] = k = 1 p ω k s q [ n k ] ,
e [ n ] = s [ n ] s ^ [ n ] .
J = E [ s 2 [ n ] ] 2 k = 1 p ω k E [ s [ n ] s [ n k ] ] + j = 1 p k = 1 p ω j ω k E [ s [ n j ] s [ n k ] ]
J = E [ s 2 [ n ] ] 2 k = 1 p ω k R s [ k ] + j = 1 p k = 1 p ω j ω k R s [ k j ] ,
j = 1 p ω j R s [ k j ] = R s [ k ] .
R s w o = r s ,
R s = [ R s [ 0 ] R s [ 1 ] ... R s [ p 1 ] R s [ 1 ] R s [ 0 ] ... R s [ p 2 ] R s [ p 1 ] R s [ p 2 ] ... R s [ 0 ] ] .
f Q ( q ) = { 1 / Δ , Δ / 2 < q Δ / 2 0 , o t h e r w i s e .
σ Q 2 = E [ Q 2 ] = Δ / 2 Δ / 2 q 2 f Q ( q ) d q = 1 Δ Δ / 2 Δ / 2 q 2 d q = Δ 2 12 .
S N R q = σ s 2 σ q 2 = 12 σ s 2 Δ 2 .
S N R q = σ s 2 σ q 2 = σ s 2 σ e 2 σ e 2 σ q 2 = G p σ e 2 σ q 2 ,
S N R D P C M S N R P C M = σ s , D 2 σ q , D 2 / σ s , P 2 σ q , P 2 = ( σ s , D 2 σ e , D 2 σ e , D 2 σ q , D 2 ) / σ s , P 2 σ q , P 2 = G p ( σ e , D 2 σ q , D 2 / σ s , P 2 σ q , P 2 ) ,
S N R D P C M S N R P C M = G p ,
S N R D P C M ( d B ) = S N R P C M ( d B ) + 10 log 10 G p .
σ e 2 = σ s 2 E [ s [ n ] s ^ [ n ] ] = σ s 2 k = 1 p ω k R s [ k ] = σ s 2 ( 1 k = 1 p ω k R s [ k ] R s [ 0 ] ) .
G p = σ s 2 σ s 2 ( 1 k = 1 p ω k R s [ k ] R s [ 0 ] ) = 1 1 k = 1 p ω k R s [ k ] R s [ 0 ] .

Metrics